These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27909706)

  • 41. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions.
    Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Jul; 13(14):2802-7. PubMed ID: 23670133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.
    Yaraş YS; Gündüz AB; Sağlam G; Ölçer S; Civitçi F; Baris İ; Yaralioğlu G; Urey H
    J Biomed Opt; 2017 Nov; 22(11):1-8. PubMed ID: 29127692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inertial flow focusing: a case study in optimizing cellular trajectory through a microfluidic MEMS device for timing-critical applications.
    Patterson LHC; Walker JL; Naivar MA; Rodriguez-Mesa E; Hoonejani MR; Shields K; Foster JS; Doyle AM; Valentine MT; Foster KL
    Biomed Microdevices; 2020 Aug; 22(3):52. PubMed ID: 32770358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of microfluidic sample preparation with PCR detection to investigate the effects of simultaneous DNA-Inhibitor separation and DNA solution exchange.
    Nikdoost A; Doostmohammadi A; Romanick K; Thomas M; Rezai P
    Anal Chim Acta; 2021 May; 1160():338449. PubMed ID: 33894958
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
    Hengoju S; Shvydkiv O; Tovar M; Roth M; Rosenbaum MA
    Biosens Bioelectron; 2022 Mar; 200():113910. PubMed ID: 34974260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection.
    Hsiung SK; Lin CH; Lee GB
    Electrophoresis; 2005 Mar; 26(6):1122-9. PubMed ID: 15704249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The potential use of fiber optics for detection in microchip separation and miniaturized flow-cell systems.
    Caglar P; Landers JP
    J Capill Electrophor Microchip Technol; 2003; 8(3-4):69-76. PubMed ID: 14596338
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advancements in microfluidics for nanoparticle separation.
    Salafi T; Zeming KK; Zhang Y
    Lab Chip; 2016 Dec; 17(1):11-33. PubMed ID: 27830852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Universally applicable three-dimensional hydrodynamic microfluidic flow focusing.
    Chiu YJ; Cho SH; Mei Z; Lien V; Wu TF; Lo YH
    Lab Chip; 2013 May; 13(9):1803-9. PubMed ID: 23493956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfabricated high-throughput electronic particle detector.
    Wood DK; Requa MV; Cleland AN
    Rev Sci Instrum; 2007 Oct; 78(10):104301. PubMed ID: 17979441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microelectrophoretic single-cell measurements with microfluidic devices.
    Sibbitts J; Sadeghi J; Culbertson CT
    Methods Enzymol; 2019; 628():223-241. PubMed ID: 31668231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiplex single particle analysis in microfluidics.
    Dannhauser D; Romeo G; Causa F; De Santo I; Netti PA
    Analyst; 2014 Oct; 139(20):5239-46. PubMed ID: 25133272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of micromachined magnetic particle separators for bioseparation in microfluidic systems.
    Choi JW
    Methods Mol Biol; 2006; 321():65-81. PubMed ID: 16508066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A microfluidic chip for ICPMS sample introduction.
    Verboket PE; Borovinskaya O; Meyer N; Günther D; Dittrich PS
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.