These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27909886)

  • 1. Automatic snoring sounds detection from sleep sounds via multi-features analysis.
    Wang C; Peng J; Song L; Zhang X
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):127-135. PubMed ID: 27909886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic snoring sounds detection from sleep sounds based on deep learning.
    Jiang Y; Peng J; Zhang X
    Phys Eng Sci Med; 2020 Jun; 43(2):679-689. PubMed ID: 32378124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds.
    Jiang Y; Peng J; Song L
    Sleep Med; 2021 Aug; 84():317-323. PubMed ID: 34217922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome.
    Karunajeewa AS; Abeyratne UR; Hukins C
    Physiol Meas; 2011 Jan; 32(1):83-97. PubMed ID: 21119221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal shape feature for automatic snore and breathing sounds classification.
    Emoto T; Kashihara M; Abeyratne UR; Kawata I; Jinnouchi O; Akutagawa M; Konaka S; Kinouchi Y
    Physiol Meas; 2014 Dec; 35(12):2489-99. PubMed ID: 25402486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustics of snoring and automatic snore sound detection in children.
    Çavuşoğlu M; Poets CF; Urschitz MS
    Physiol Meas; 2017 Oct; 38(11):1919-1938. PubMed ID: 28871074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks for breathing and snoring episode detection in sleep sounds.
    Emoto T; Abeyratne UR; Chen Y; Kawata I; Akutagawa M; Kinouchi Y
    Physiol Meas; 2012 Oct; 33(10):1675-89. PubMed ID: 22986469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic identifying OSAHS patients and simple snorers based on Gaussian mixture models.
    Sun X; Ding L; Song Y; Peng J; Song L; Zhang X
    Physiol Meas; 2023 May; 44(4):. PubMed ID: 37059109
    [No Abstract]   [Full Text] [Related]  

  • 9. An efficient method for snore/nonsnore classification of sleep sounds.
    Cavusoglu M; Kamasak M; Erogul O; Ciloglu T; Serinagaoglu Y; Akcam T
    Physiol Meas; 2007 Aug; 28(8):841-53. PubMed ID: 17664676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of OSAHS patients based on ReliefF-mRMR feature selection.
    Ye Z; Peng J; Zhang X; Song L
    Phys Eng Sci Med; 2024 Mar; 47(1):99-108. PubMed ID: 37878092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snoring sound classification from respiratory signal.
    Shokrollahi M; Saha S; Hadi P; Rudzicz F; Yadollahi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3215-3218. PubMed ID: 28268992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AHI estimation of OSAHS patients based on snoring classification and fusion model.
    Song Y; Sun X; Ding L; Peng J; Song L; Zhang X
    Am J Otolaryngol; 2023; 44(5):103964. PubMed ID: 37392727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of whole night snoring events using non-contact microphone.
    Dafna E; Tarasiuk A; Zigel Y
    PLoS One; 2013; 8(12):e84139. PubMed ID: 24391903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An audio-semantic multimodal model for automatic obstructive sleep Apnea-Hypopnea Syndrome classification via multi-feature analysis of snoring sounds.
    Qiu X; Wang C; Li B; Tong H; Tan X; Yang L; Tao J; Huang J
    Front Neurosci; 2024; 18():1336307. PubMed ID: 38800571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous analysis and monitoring of snores and their relationship to the apnea-hypopnea index.
    Fiz JA; Jané R; Solà-Soler J; Abad J; García MA; Morera J
    Laryngoscope; 2010 Apr; 120(4):854-62. PubMed ID: 20222022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic breath and snore sounds classification from tracheal and ambient sounds recordings.
    Yadollahi A; Moussavi Z
    Med Eng Phys; 2010 Nov; 32(9):985-90. PubMed ID: 20674455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis.
    Qian K; Janott C; Pandit V; Zhang Z; Heiser C; Hohenhorst W; Herzog M; Hemmert W; Schuller B
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1731-1741. PubMed ID: 28113249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Snore from OSAHS Patients Based on Deep Learning.
    Shen F; Cheng S; Li Z; Yue K; Li W; Dai L
    J Healthc Eng; 2020; 2020():8864863. PubMed ID: 33456742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals.
    Montazeri Ghahjaverestan N; Saha S; Kabir M; Gavrilovic B; Zhu K; Yadollahi A
    J Sleep Res; 2022 Apr; 31(2):e13490. PubMed ID: 34553793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a new snoring detection device based on a hysteresis extraction algorithm.
    Hara H; Tsutsumi M; Tarumoto S; Shiga T; Yamashita H
    Auris Nasus Larynx; 2017 Oct; 44(5):576-582. PubMed ID: 28161244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.