BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27909919)

  • 1. A short history of heme dioxygenases: rise, fall and rise again.
    Raven EL
    J Biol Inorg Chem; 2017 Apr; 22(2-3):175-183. PubMed ID: 27909919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme-containing dioxygenases involved in tryptophan oxidation.
    Millett ES; Efimov I; Basran J; Handa S; Mowat CG; Raven EL
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):60-6. PubMed ID: 22356841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of L-tryptophan in biology: a comparison between tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase.
    Rafice SA; Chauhan N; Efimov I; Basran J; Raven EL
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):408-12. PubMed ID: 19290871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily.
    De Laurentis W; Khim L; Anderson JL; Adam A; Johnson KA; Phillips RS; Chapman SK; van Pee KH; Naismith JH
    Biochemistry; 2007 Oct; 46(43):12393-404. PubMed ID: 17924666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reassessment of the reaction mechanism in the heme dioxygenases.
    Chauhan N; Thackray SJ; Rafice SA; Eaton G; Lee M; Efimov I; Basran J; Jenkins PR; Mowat CG; Chapman SK; Raven EL
    J Am Chem Soc; 2009 Apr; 131(12):4186-7. PubMed ID: 19275153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Reaction Intermediates in Tryptophan 2,3-Dioxygenase: A Comparison with Indoleamine 2,3-Dioxygenase.
    Basran J; Booth ES; Lee M; Handa S; Raven EL
    Biochemistry; 2016 Dec; 55(49):6743-6750. PubMed ID: 27951658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial O₂ Insertion Step of the Tryptophan Dioxygenase Reaction Proposed by a Heme-Modification Study.
    Makino R; Obayashi E; Hori H; Iizuka T; Mashima K; Shiro Y; Ishimura Y
    Biochemistry; 2015 Jun; 54(23):3604-16. PubMed ID: 25996254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and reaction mechanism in the heme dioxygenases.
    Efimov I; Basran J; Thackray SJ; Handa S; Mowat CG; Raven EL
    Biochemistry; 2011 Apr; 50(14):2717-24. PubMed ID: 21361337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of formation of N-formylkynurenine by heme dioxygenases.
    Basran J; Efimov I; Chauhan N; Thackray SJ; Krupa JL; Eaton G; Griffith GA; Mowat CG; Handa S; Raven EL
    J Am Chem Soc; 2011 Oct; 133(40):16251-7. PubMed ID: 21892828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How is the distal pocket of a heme protein optimized for binding of tryptophan?
    Chauhan N; Basran J; Rafice SA; Efimov I; Millett ES; Mowat CG; Moody PC; Handa S; Raven EL
    FEBS J; 2012 Dec; 279(24):4501-9. PubMed ID: 23083473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new regime of heme-dependent aromatic oxygenase superfamily.
    Shin I; Wang Y; Liu A
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34667125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis.
    Zhang Y; Kang SA; Mukherjee T; Bale S; Crane BR; Begley TP; Ealick SE
    Biochemistry; 2007 Jan; 46(1):145-55. PubMed ID: 17198384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ONIOM study on a missing piece in our understanding of heme chemistry: bacterial tryptophan 2,3-dioxygenase with dual oxidants.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2010 Sep; 132(34):11993-2005. PubMed ID: 20698527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of 2-Oxindole Forming Heme Enzyme MarE, Expanding the Functional Diversity of the Tryptophan Dioxygenase Superfamily.
    Zhang Y; Zou Y; Brock NL; Huang T; Lan Y; Wang X; Deng Z; Tang Y; Lin S
    J Am Chem Soc; 2017 Aug; 139(34):11887-11894. PubMed ID: 28809552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations.
    Bugg TD; Ramaswamy S
    Curr Opin Chem Biol; 2008 Apr; 12(2):134-40. PubMed ID: 18249197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory study on a missing piece in understanding of heme chemistry: the reaction mechanism for indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.
    Chung LW; Li X; Sugimoto H; Shiro Y; Morokuma K
    J Am Chem Soc; 2008 Sep; 130(37):12299-309. PubMed ID: 18712870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging roles for thiol dioxygenases as oxygen sensors.
    Gunawardana DM; Heathcote KC; Flashman E
    FEBS J; 2022 Sep; 289(18):5426-5439. PubMed ID: 34346181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-assisted O2 activation in a cofactor-independent dioxygenase.
    Thierbach S; Bui N; Zapp J; Chhabra SR; Kappl R; Fetzner S
    Chem Biol; 2014 Feb; 21(2):217-25. PubMed ID: 24388758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobaltous chloride-mediated induction of rat hepatic tryptophan 2,3-dioxygenase: implications for the use of the enzyme to probe the hepatic free heme pool.
    Liu H; Correia MA
    Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):881-9. PubMed ID: 7849555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan-catabolizing enzymes - party of three.
    Ball HJ; Jusof FF; Bakmiwewa SM; Hunt NH; Yuasa HJ
    Front Immunol; 2014; 5():485. PubMed ID: 25346733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.