BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 27909920)

  • 1. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation.
    Huang X; Groves JT
    J Biol Inorg Chem; 2017 Apr; 22(2-3):185-207. PubMed ID: 27909920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes.
    Cho KB; Wu X; Lee YM; Kwon YH; Shaik S; Nam W
    J Am Chem Soc; 2012 Dec; 134(50):20222-5. PubMed ID: 23205855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "somersault" mechanism for the p-450 hydroxylation of hydrocarbons. The intervention of transient inverted metastable hydroperoxides.
    Bach RD; Dmitrenko O
    J Am Chem Soc; 2006 Feb; 128(5):1474-88. PubMed ID: 16448118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical Rebound Hydroxylation Versus H-Atom Transfer in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Structural Differentiation.
    Drummond MJ; Ford CL; Gray DL; Popescu CV; Fout AR
    J Am Chem Soc; 2019 Apr; 141(16):6639-6650. PubMed ID: 30969766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance.
    Dunham NP; Chang WC; Mitchell AJ; Martinie RJ; Zhang B; Bergman JA; Rajakovich LJ; Wang B; Silakov A; Krebs C; Boal AK; Bollinger JM
    J Am Chem Soc; 2018 Jun; 140(23):7116-7126. PubMed ID: 29708749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases.
    Pan J; Wenger ES; Matthews ML; Pollock CJ; Bhardwaj M; Kim AJ; Allen BD; Grossman RB; Krebs C; Bollinger JM
    J Am Chem Soc; 2019 Sep; 141(38):15153-15165. PubMed ID: 31475820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer.
    Cho K; Leeladee P; McGown AJ; DeBeer S; Goldberg DP
    J Am Chem Soc; 2012 May; 134(17):7392-9. PubMed ID: 22489757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese Catalyzed C-H Halogenation.
    Liu W; Groves JT
    Acc Chem Res; 2015 Jun; 48(6):1727-35. PubMed ID: 26042637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutarate Hydroxylation by the Carbon Starvation-Induced Protein D: A Computational Study into the Stereo- and Regioselectivities of the Reaction.
    Han SB; Ali HS; de Visser SP
    Inorg Chem; 2021 Apr; 60(7):4800-4815. PubMed ID: 33764783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes.
    Cho KB; Hirao H; Shaik S; Nam W
    Chem Soc Rev; 2016 Mar; 45(5):1197-210. PubMed ID: 26690848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Investigation of Oxygen Rebound in a Mononuclear Nonheme Iron Complex.
    Pangia TM; Yadav V; Gérard EF; Lin YT; de Visser SP; Jameson GNL; Goldberg DP
    Inorg Chem; 2019 Aug; 58(15):9557-9561. PubMed ID: 31313577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverting non-haem iron catalysed aliphatic C-H hydroxylations towards desaturations.
    Bigi MA; Reed SA; White MC
    Nat Chem; 2011 Mar; 3(3):216-22. PubMed ID: 21336327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450.
    Yoshizawa K; Kamachi T; Shiota Y
    J Am Chem Soc; 2001 Oct; 123(40):9806-16. PubMed ID: 11583542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent.
    Postils V; Company A; Solà M; Costas M; Luis JM
    Inorg Chem; 2015 Sep; 54(17):8223-36. PubMed ID: 26288338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of benzene hydroxylation by high-valent bare Fe(IV)=O2+: explicit electronic structure analysis.
    Li JL; Zhang X; Huang XR
    Phys Chem Chem Phys; 2012 Jan; 14(1):246-56. PubMed ID: 22068928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate.
    Latifi R; Bagherzadeh M; de Visser SP
    Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.