These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 27909940)
1. Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. Dang L; Liu J; Wang C; Liu H; Wen J J Ind Microbiol Biotechnol; 2017 Feb; 44(2):259-270. PubMed ID: 27909940 [TBL] [Abstract][Full Text] [Related]
2. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Wang J; Wang C; Song K; Wen J Microb Cell Fact; 2017 Oct; 16(1):169. PubMed ID: 28974216 [TBL] [Abstract][Full Text] [Related]
3. Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. Geng H; Liu H; Liu J; Wang C; Wen J World J Microbiol Biotechnol; 2017 Jun; 33(6):101. PubMed ID: 28466297 [TBL] [Abstract][Full Text] [Related]
4. A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Jung WS; Yoo YJ; Park JW; Park SR; Han AR; Ban YH; Kim EJ; Kim E; Yoon YJ Appl Microbiol Biotechnol; 2011 Sep; 91(5):1389-97. PubMed ID: 21655985 [TBL] [Abstract][Full Text] [Related]
5. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Huang D; Li S; Xia M; Wen J; Jia X Microb Cell Fact; 2013 May; 12():52. PubMed ID: 23705993 [TBL] [Abstract][Full Text] [Related]
6. Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. Kuscer E; Coates N; Challis I; Gregory M; Wilkinson B; Sheridan R; Petković H J Bacteriol; 2007 Jul; 189(13):4756-63. PubMed ID: 17468238 [TBL] [Abstract][Full Text] [Related]
7. Generation of Streptomyces hygroscopicus cell factories with enhanced ascomycin production by combined elicitation and pathway-engineering strategies. Wang C; Wang J; Yuan J; Jiang L; Jiang X; Yang B; Zhao G; Liu B; Huang D Biotechnol Bioeng; 2019 Dec; 116(12):3382-3395. PubMed ID: 31478187 [TBL] [Abstract][Full Text] [Related]
8. Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus. Wang B; Liu J; Liu H; Huang D; Wen J J Ind Microbiol Biotechnol; 2015 Jun; 42(6):949-63. PubMed ID: 25840873 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of FK520 production in Streptomyces hygroscopicus by combining traditional mutagenesis with metabolic engineering. Yu Z; Lv H; Wu Y; Wei T; Yang S; Ju D; Chen S Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9593-9606. PubMed ID: 31713669 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Andexer JN; Kendrew SG; Nur-e-Alam M; Lazos O; Foster TA; Zimmermann AS; Warneck TD; Suthar D; Coates NJ; Koehn FE; Skotnicki JS; Carter GT; Gregory MA; Martin CJ; Moss SJ; Leadlay PF; Wilkinson B Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4776-81. PubMed ID: 21383123 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902-109 and Streptomyces hygroscopicus ATCC29253. Huang H; Ren SX; Yang S; Hu HF Chin J Nat Med; 2015 Feb; 13(2):90-8. PubMed ID: 25769891 [TBL] [Abstract][Full Text] [Related]
13. Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Chen X; Wei P; Fan L; Yang D; Zhu X; Shen W; Xu Z; Cen P Appl Microbiol Biotechnol; 2009 Jun; 83(3):507-12. PubMed ID: 19259658 [TBL] [Abstract][Full Text] [Related]
14. A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain. Ruan X; Stassi D; Lax SA; Katz L Gene; 1997 Dec; 203(1):1-9. PubMed ID: 9426000 [TBL] [Abstract][Full Text] [Related]
15. Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. Zhao S; Huang D; Qi H; Wen J; Jia X Appl Microbiol Biotechnol; 2013 Jun; 97(12):5329-41. PubMed ID: 23604534 [TBL] [Abstract][Full Text] [Related]
16. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Zhu X; Zhang W; Chen X; Wu H; Duan Y; Xu Z Biotechnol Bioeng; 2010 Oct; 107(3):506-15. PubMed ID: 20517869 [TBL] [Abstract][Full Text] [Related]
17. The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Wu K; Chung L; Revill WP; Katz L; Reeves CD Gene; 2000 Jun; 251(1):81-90. PubMed ID: 10863099 [TBL] [Abstract][Full Text] [Related]
18. Studies on process optimization methods for rapamycin production using Streptomyces hygroscopicus ATCC 29253. Sinha R; Singh S; Srivastava P Bioprocess Biosyst Eng; 2014 May; 37(5):829-40. PubMed ID: 24048754 [TBL] [Abstract][Full Text] [Related]
19. Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Jo HG; Adidjaja JJ; Kim DK; Park BS; Lee N; Cho BK; Kim HU; Oh MK Sci Rep; 2022 Jun; 12(1):10302. PubMed ID: 35717543 [TBL] [Abstract][Full Text] [Related]
20. [Construction of genetically engineered strain producing 5- oxomilbemycin by knocking out milF in Steptomyces hygroscopicus HS023]. Huang J; Lin J; Zhou M; Bai H Wei Sheng Wu Xue Bao; 2015 Jan; 55(1):107-13. PubMed ID: 25958689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]