These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27910122)

  • 1. One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information.
    Hua H; Burke DL; Crowther MJ; Ensor J; Tudur Smith C; Riley RD
    Stat Med; 2017 Feb; 36(5):772-789. PubMed ID: 27910122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for identifying treatment-covariate interactions in individual participant data network meta-analysis.
    Freeman SC; Fisher D; Tierney JF; Carpenter JR
    Res Synth Methods; 2018 Sep; 9(3):393-407. PubMed ID: 29737630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual Patient Data Meta-Analysis and Network Meta-Analysis.
    Freeman SC
    Methods Mol Biol; 2022; 2345():279-298. PubMed ID: 34550597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning.
    Riley RD; Debray TPA; Fisher D; Hattle M; Marlin N; Hoogland J; Gueyffier F; Staessen JA; Wang J; Moons KGM; Reitsma JB; Ensor J
    Stat Med; 2020 Jul; 39(15):2115-2137. PubMed ID: 32350891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of multiple covariates in assessing treatment-effect modifiers: A methodological review of individual participant data meta-analyses.
    Godolphin PJ; Marlin N; Cornett C; Fisher DJ; Tierney JF; White IR; RogoziƄska E
    Res Synth Methods; 2024 Jan; 15(1):107-116. PubMed ID: 37771175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners.
    Fisher DJ; Copas AJ; Tierney JF; Parmar MK
    J Clin Epidemiol; 2011 Sep; 64(9):949-67. PubMed ID: 21411280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study.
    Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J
    BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data.
    Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD
    Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation-based power calculations for planning a two-stage individual participant data meta-analysis.
    Ensor J; Burke DL; Snell KIE; Hemming K; Riley RD
    BMC Med Res Methodol; 2018 May; 18(1):41. PubMed ID: 29776399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis of continuous outcomes combining individual patient data and aggregate data.
    Riley RD; Lambert PC; Staessen JA; Wang J; Gueyffier F; Thijs L; Boutitie F
    Stat Med; 2008 May; 27(11):1870-93. PubMed ID: 18069721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis of a binary outcome using individual participant data and aggregate data.
    Riley RD; Steyerberg EW
    Res Synth Methods; 2010 Jan; 1(1):2-19. PubMed ID: 26056090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ.
    Burke DL; Ensor J; Riley RD
    Stat Med; 2017 Feb; 36(5):855-875. PubMed ID: 27747915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome.
    Riley RD; Hattle M; Collins GS; Whittle R; Ensor J
    Stat Med; 2022 Oct; 41(24):4822-4837. PubMed ID: 35932153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of one-stage vs two-stage individual patient data meta-analysis methods: A simulation study.
    Kontopantelis E
    Res Synth Methods; 2018 Sep; 9(3):417-430. PubMed ID: 29786975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A frequentist one-step model for a simple network meta-analysis of time-to-event data in presence of an effect modifier.
    Faron M; Blanchard P; Ribassin-Majed L; Pignon JP; Michiels S; Le Teuff G
    PLoS One; 2021; 16(11):e0259121. PubMed ID: 34723994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculating the power of a planned individual participant data meta-analysis of randomised trials to examine a treatment-covariate interaction with a time-to-event outcome.
    Riley RD; Collins GS; Hattle M; Whittle R; Ensor J
    Res Synth Methods; 2023 Sep; 14(5):718-730. PubMed ID: 37386750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling ecological bias in evidence synthesis of trials reporting on collapsed and overlapping covariate categories.
    Govan L; Ades AE; Weir CJ; Welton NJ; Langhorne P
    Stat Med; 2010 May; 29(12):1340-56. PubMed ID: 20191599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating interactions in individual participant data meta-analysis: a comparison of methods in practice.
    Walker R; Stewart L; Simmonds M
    Syst Rev; 2022 Oct; 11(1):211. PubMed ID: 36199096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual participant data meta-analysis to examine linear or non-linear treatment-covariate interactions at multiple time-points for a continuous outcome.
    Hattle M; Ensor J; Scandrett K; van Middelkoop M; van der Windt DA; Holden MA; Riley RD
    Res Synth Methods; 2024 Nov; 15(6):1001-1016. PubMed ID: 39284791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No consistent evidence of data availability bias existed in recent individual participant data meta-analyses: a meta-epidemiological study.
    Tsujimoto Y; Fujii T; Onishi A; Omae K; Luo Y; Imai H; Takahashi S; Itaya T; Pinson C; Nevitt SJ; Furukawa TA
    J Clin Epidemiol; 2020 Feb; 118():107-114.e5. PubMed ID: 31654789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.