These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 27910220)

  • 1. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.
    Gomez I; Leonet O; Blazquez JA; Mecerreyes D
    ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of elemental sulfur as an alternative feedstock for polymeric materials.
    Chung WJ; Griebel JJ; Kim ET; Yoon H; Simmonds AG; Ji HJ; Dirlam PT; Glass RS; Wie JJ; Nguyen NA; Guralnick BW; Park J; Somogyi A; Theato P; Mackay ME; Sung YE; Char K; Pyun J
    Nat Chem; 2013 Jun; 5(6):518-24. PubMed ID: 23695634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life.
    Xiao L; Cao Y; Xiao J; Schwenzer B; Engelhard MH; Saraf LV; Nie Z; Exarhos GJ; Liu J
    Adv Mater; 2012 Mar; 24(9):1176-81. PubMed ID: 22278978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
    Jin L; Huang X; Zeng G; Wu H; Morbidelli M
    Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.
    Lacey MJ; Österlund V; Bergfelt A; Jeschull F; Bowden T; Brandell D
    ChemSusChem; 2017 Jul; 10(13):2758-2766. PubMed ID: 28544635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries.
    Chen H; Dong W; Ge J; Wang C; Wu X; Lu W; Chen L
    Sci Rep; 2013; 3():1910. PubMed ID: 23714786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Mesoporous Carbon: A Top-Down Strategy to Promote Sulfur Immobilization for Lithium-Sulfur Batteries.
    Zhao X; Liu Y; Manuel J; Chauhan GS; Ahn HJ; Kim KW; Cho KK; Ahn JH
    ChemSusChem; 2015 Oct; 8(19):3234-41. PubMed ID: 26336933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.
    Patel MU; Dominko R
    ChemSusChem; 2014 Aug; 7(8):2167-75. PubMed ID: 25044737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Applications of Polymers Made by Inverse Vulcanization.
    Chalker JM; Worthington MJH; Lundquist NA; Esdaile LJ
    Top Curr Chem (Cham); 2019 May; 377(3):16. PubMed ID: 31111247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration.
    Agostini M; Lim DH; Sadd M; Fasciani C; Navarra MA; Panero S; Brutti S; Matic A; Scrosati B
    ChemSusChem; 2017 Sep; 10(17):3490-3496. PubMed ID: 28731629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.