These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27910522)

  • 1. Design and characterization of a linear Hencken-type burner.
    Campbell MF; Bohlin GA; Schrader PE; Bambha RP; Kliewer CJ; Johansson KO; Michelsen HA
    Rev Sci Instrum; 2016 Nov; 87(11):115114. PubMed ID: 27910522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies.
    Adeosun A; Huang Q; Li T; Gopan A; Wang X; Li S; Axelbaum RL
    Rev Sci Instrum; 2018 Feb; 89(2):025109. PubMed ID: 29495807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames.
    Guo H; Castillo JA; Sunderland PB
    Appl Opt; 2013 Nov; 52(33):8040-7. PubMed ID: 24513755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.
    Zhang J; Shaddix CR; Schefer RW
    Rev Sci Instrum; 2011 Jul; 82(7):074101. PubMed ID: 21806201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion.
    Weng W; Borggren J; Li B; Aldén M; Li Z
    Rev Sci Instrum; 2017 Apr; 88(4):045104. PubMed ID: 28456221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.
    Rhoby MR; Blunck DL; Gross KC
    Opt Express; 2014 Sep; 22(18):21600-17. PubMed ID: 25321539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the effect of iron on PM10 formation and design of a particle-generating system using a cocentric diffusion burner flame.
    Yang G
    J Air Waste Manag Assoc; 2004 Aug; 54(8):898-907. PubMed ID: 15373357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced incandescence measurements of soot in turbulent pool fires.
    Frederickson K; Kearney SP; Grasser TW
    Appl Opt; 2011 Feb; 50(4):A49-59. PubMed ID: 21283220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional imaging of soot volume fraction in laminar diffusion flames.
    Snelling DR; Thomson KA; Smallwood GJ; Gülder OL
    Appl Opt; 1999 Apr; 38(12):2478-85. PubMed ID: 18319815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental/numerical investigation of non-reacting turbulent flow in a piloted premixed Bunsen burner.
    Pareja J; Lipkowicz T; Inanc E; Carter CD; Kempf A; Boxx I
    Exp Fluids; 2022; 63(1):33. PubMed ID: 35125637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine.
    Cadrazco M; Santamaría A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR
    Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of laser-induced ionization to detect soot inception in premixed flames.
    Manzello SL; Lee EJ; Mulholland GW
    Appl Opt; 2005 Aug; 44(24):5105-11. PubMed ID: 16121796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate.
    Hammack S; Carter C; Wuensche C; Lee T
    Appl Opt; 2014 Aug; 53(23):5246-51. PubMed ID: 25320935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame.
    Houston Miller J; Elreedy S; Ahvazi B; Woldu F; Hassanzadeh P
    Appl Opt; 1993 Oct; 32(30):6082-9. PubMed ID: 20856436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.