These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27910954)

  • 1. Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection.
    Xu Y; Ding YX; Ding J; Wu LY; Xue Y
    Sci Rep; 2016 Dec; 6():38318. PubMed ID: 27910954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features.
    Taherzadeh G; Yang Y; Xu H; Xue Y; Liew AW; Zhou Y
    J Comput Chem; 2018 Aug; 39(22):1757-1763. PubMed ID: 29761520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
    Xu Y; Ding J; Wu LY
    PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.
    Gao J; Tao XW; Zhao J; Feng YM; Cai YD; Zhang N
    Comb Chem High Throughput Screen; 2017; 20(7):629-637. PubMed ID: 28292250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine ubiquitination with mRMR feature selection and analysis.
    Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y
    Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis.
    Zhou Y; Zhang N; Li BQ; Huang T; Cai YD; Kong XY
    J Biomol Struct Dyn; 2015; 33(11):2479-90. PubMed ID: 25616595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Method for Identifying Malonylation Sites by Using Random Forest Algorithm.
    Wang S; Li J; Sun X; Zhang YH; Huang T; Cai Y
    Comb Chem High Throughput Screen; 2020; 23(4):304-312. PubMed ID: 30588879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phogly-PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity.
    Xu Y; Ding YX; Ding J; Wu LY; Deng NY
    J Theor Biol; 2015 Aug; 379():10-5. PubMed ID: 25913879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid.
    Xiang Q; Feng K; Liao B; Liu Y; Huang G
    Comb Chem High Throughput Screen; 2017; 20(7):622-628. PubMed ID: 28292251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC.
    Liu LM; Xu Y; Chou KC
    Med Chem; 2017; 13(6):552-559. PubMed ID: 28521678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gly-PseAAC: Identifying protein lysine glycation through sequences.
    Xu Y; Li L; Ding J; Wu LY; Mai G; Zhou F
    Gene; 2017 Feb; 602():1-7. PubMed ID: 27845204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of the lysine malonylome in common wheat.
    Liu J; Wang G; Lin Q; Liang W; Gao Z; Mu P; Li G; Song L
    BMC Genomics; 2018 Mar; 19(1):209. PubMed ID: 29558883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.
    Qian L; Nie L; Chen M; Liu P; Zhu J; Zhai L; Tao SC; Cheng Z; Zhao Y; Tan M
    J Proteome Res; 2016 Jun; 15(6):2060-71. PubMed ID: 27183143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition.
    Xu Y; Wen X; Shao XJ; Deng NY; Chou KC
    Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.