These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27911405)

  • 1. Automated Robotic Dispensing Technique for Surface Guidance and Bioprinting of Cells.
    Bhuthalingam R; Lim PQ; Irvine SA; Venkatraman SS
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance.
    Tijore A; Behr JM; Irvine SA; Baisane V; Venkatraman S
    Biomed Microdevices; 2018 Mar; 20(2):32. PubMed ID: 29594704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded Multimaterial Extrusion Bioprinting.
    Rocca M; Fragasso A; Liu W; Heinrich MA; Zhang YS
    SLAS Technol; 2018 Apr; 23(2):154-163. PubMed ID: 29132232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.
    Sakai S; Ohi H; Hotta T; Kamei H; Taya M
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
    Dubbin K; Hori Y; Lewis KK; Heilshorn SC
    Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel Bioink with Multilayered Interfaces Improves Dispersibility of Encapsulated Cells in Extrusion Bioprinting.
    Chen N; Zhu K; Zhang YS; Yan S; Pan T; Abudupataer M; Yu G; Alam MF; Wang L; Sun X; Yu Y; Wang C; Zhang W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30585-30595. PubMed ID: 31378063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
    Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A
    Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform.
    Agarwala S; Lee JM; Ng WL; Layani M; Yeong WY; Magdassi S
    Biosens Bioelectron; 2018 Apr; 102():365-371. PubMed ID: 29172145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.
    Wüst S; Godla ME; Müller R; Hofmann S
    Acta Biomater; 2014 Feb; 10(2):630-40. PubMed ID: 24157694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue.
    Byambaa B; Annabi N; Yue K; Trujillo-de Santiago G; Alvarez MM; Jia W; Kazemzadeh-Narbat M; Shin SR; Tamayol A; Khademhosseini A
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28524375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.
    Zhang YS; Pi Q; van Genderen AM
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28829418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.
    Wang Z; Abdulla R; Parker B; Samanipour R; Ghosh S; Kim K
    Biofabrication; 2015 Dec; 7(4):045009. PubMed ID: 26696527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically Tunable Bioink for 3D Bioprinting of Human Cells.
    Forget A; Blaeser A; Miessmer F; Köpf M; Campos DFD; Voelcker NH; Blencowe A; Fischer H; Shastri VP
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28731220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation.
    Gantumur E; Nakahata M; Kojima M; Sakai S
    Int J Bioprint; 2020; 6(1):250. PubMed ID: 32596552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.