These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27911438)

  • 1. Evolutionary convergence in experimental Pseudomonas populations.
    Lind PA; Farr AD; Rainey PB
    ISME J; 2017 Mar; 11(3):589-600. PubMed ID: 27911438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary flexibility in routes to mat formation by Pseudomonas.
    Mukherjee A; Dechow-Seligmann G; Gallie J
    Mol Microbiol; 2022 Feb; 117(2):394-410. PubMed ID: 34856020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose.
    Spiers AJ; Bohannon J; Gehrig SM; Rainey PB
    Mol Microbiol; 2003 Oct; 50(1):15-27. PubMed ID: 14507360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness.
    Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB
    Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success.
    Spiers AJ
    PLoS One; 2007 Aug; 2(8):e740. PubMed ID: 17710140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype.
    Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB
    Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation.
    Ferguson GC; Bertels F; Rainey PB
    Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
    Pentz JT; Lind PA
    PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the wrinkly spreader.
    Spiers AJ
    Int J Evol Biol; 2014; 2014():675432. PubMed ID: 24551477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface.
    Ardré M; Dufour D; Rainey PB
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens.
    MacLean RC; Bell G; Rainey PB
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8072-7. PubMed ID: 15150419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness.
    Jerdan R; Kuśmierska A; Petric M; Spiers AJ
    Microbiology (Reading); 2019 Oct; 165(10):1061-1074. PubMed ID: 31436522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation.
    McDonald MJ; Gehrig SM; Meintjes PL; Zhang XX; Rainey PB
    Genetics; 2009 Nov; 183(3):1041-53. PubMed ID: 19704015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity.
    Bantinaki E; Kassen R; Knight CG; Robinson Z; Spiers AJ; Rainey PB
    Genetics; 2007 May; 176(1):441-53. PubMed ID: 17339222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evolution reveals hidden diversity in evolutionary pathways.
    Lind PA; Farr AD; Rainey PB
    Elife; 2015 Mar; 4():. PubMed ID: 25806684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader.
    Koza A; Moshynets O; Otten W; Spiers AJ
    ISME J; 2011 Apr; 5(4):665-73. PubMed ID: 20962880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity.
    Spiers AJ; Rainey PB
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2829-2839. PubMed ID: 16151196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage.
    Koza A; Jerdan R; Cameron S; Spiers AJ
    Microbiology (Reading); 2020 Aug; 166(8):707-716. PubMed ID: 32520698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain.
    Malone JG; Williams R; Christen M; Jenal U; Spiers AJ; Rainey PB
    Microbiology (Reading); 2007 Apr; 153(Pt 4):980-994. PubMed ID: 17379708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.