BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27911467)

  • 1. A systematic investigation of the charging effect in scanning electron microscopy for metal nanostructures on insulating substrates.
    Flatabø R; Coste A; Greve MM
    J Microsc; 2017 Mar; 265(3):287-297. PubMed ID: 27911467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors: a further variable in scanning electron microscopy.
    Griffin BJ
    Scanning; 2011; 33(3):162-73. PubMed ID: 21695706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of image contrast in scanning electron microscope and helium ion microscope.
    O'Connell R; Chen Y; Zhang H; Zhou Y; Fox D; Maguire P; Wang JJ; Rodenburg C
    J Microsc; 2017 Dec; 268(3):313-320. PubMed ID: 29154504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement technique for the incident electron current in secondary electron detectors and its application in scanning electron microscopes.
    Agemura T; Fukuhara S; Todokoro H
    Scanning; 2001; 23(6):403-9. PubMed ID: 11770936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Scanning Electron Microscope Imaging of Topographical and Chemical Contrast Using In-Lens, In-Column, and Everhart-Thornley Detector Systems.
    Zhang X; Cen X; Ravichandran R; Hughes LA; van Benthem K
    Microsc Microanal; 2016 Jun; 22(3):565-75. PubMed ID: 27142307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale patterning on insulating substrates by critical energy electron beam lithography.
    Joo J; Chow BY; Jacobson JM
    Nano Lett; 2006 Sep; 6(9):2021-5. PubMed ID: 16968019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next generation secondary electron detector with energy analysis capability for SEM.
    Suri A; Pratt A; Tear S; Walker C; El-Gomati M
    J Microsc; 2020 Sep; 279(3):207-211. PubMed ID: 31985065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-voltage SEM contrasts of steel surface studied by observations and electron trajectory simulations for GEMINI lens system.
    Tandokoro K; Nagoshi M; Kawano T; Sato K; Tsuno K
    Microscopy (Oxf); 2018 Oct; 67(5):274-279. PubMed ID: 29982618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the ion-mirror effect during microscopy of insulating materials.
    Croccolo F; Riccardi C
    J Microsc; 2008 Jan; 229(Pt 1):39-43. PubMed ID: 18173643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge compensation by in-situ heating for insulating ceramics in scanning electron microscope.
    Wang L; Ji Y; Wei B; Zhang Y; Fu J; Xu X; Han X
    Ultramicroscopy; 2009 Oct; 109(11):1326-32. PubMed ID: 19577845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced detection of nanostructures by scanning electron microscopy using insulating materials.
    O'Shea A; Wallace J; Hummel M; Strauss LH; Kidd TE
    Micron; 2013; 52-53():57-61. PubMed ID: 24035678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collection efficiency and acceptance maps of electron detectors for understanding signal detection on modern scanning electron microscopy.
    Agemura T; Sekiguchi T
    Microscopy (Oxf); 2018 Feb; 67(1):18-29. PubMed ID: 29340607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron beam-induced current imaging with two-angstrom resolution.
    Mecklenburg M; Hubbard WA; Lodico JJ; Regan BC
    Ultramicroscopy; 2019 Dec; 207():112852. PubMed ID: 31678644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the low-loss scanning electron microscope image to integrated circuit technology. Part 1--Applications to accurate dimension measurements.
    Postek MT; Vladár AE; Wells OC; Lowney JL
    Scanning; 2001; 23(5):298-304. PubMed ID: 11587322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography.
    Williams C; Bartholomew R; Rughoobur G; Gordon GS; Flewitt AJ; Wilkinson TD
    Nanotechnology; 2016 Dec; 27(48):485301. PubMed ID: 27811383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
    Woehl T; Keller R
    Ultramicroscopy; 2016 Dec; 171():166-176. PubMed ID: 27690347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.
    Bok J; Schauer P
    Scanning; 2014; 36(4):384-93. PubMed ID: 24323770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a microfurnace dedicated to in situ scanning electron microscope observation up to 1300 °C. III. In situ high temperature experiments.
    Mendonça J; Lautru J; Brau HP; Nogues D; Candeias A; Podor R
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38753495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrograph contrast in low-voltage SEM and cryo-SEM.
    Liberman L; Kleinerman O; Davidovich I; Talmon Y
    Ultramicroscopy; 2020 Nov; 218():113085. PubMed ID: 32771863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charging of gold/metal oxide/gold nanocapacitors in a scanning electron microscope.
    Coutts MJ; Zareie HM; Cortie MB; McDonagh AM
    Nanotechnology; 2014 Apr; 25(15):155703. PubMed ID: 24651283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.