These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27911544)

  • 1. Fermionic Orbital Optimization in Tensor Network States.
    Krumnow C; Veis L; Legeza Ö; Eisert J
    Phys Rev Lett; 2016 Nov; 117(21):210402. PubMed ID: 27911544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems.
    Murg V; Verstraete F; Schneider R; Nagy PR; Legeza Ö
    J Chem Theory Comput; 2015 Mar; 11(3):1027-36. PubMed ID: 25844072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replica exchange molecular dynamics optimization of tensor network states for quantum many-body systems.
    Liu W; Wang C; Li Y; Lao Y; Han Y; Guo GC; Zhao YH; He L
    J Phys Condens Matter; 2015 Mar; 27(8):085601. PubMed ID: 25654245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm.
    Nakatani N; Chan GK
    J Chem Phys; 2013 Apr; 138(13):134113. PubMed ID: 23574214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations.
    Xu X; Guo C; Chen R
    J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between fermionic and qubit mean fields in the electronic structure problem.
    Ryabinkin IG; Genin SN; Izmaylov AF
    J Chem Phys; 2018 Dec; 149(21):214105. PubMed ID: 30525719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: theoretical formulation.
    Sirjoosingh A; Pak MV; Swalina C; Hammes-Schiffer S
    J Chem Phys; 2013 Jul; 139(3):034102. PubMed ID: 23883005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm.
    Ganahl M; Rincón J; Vidal G
    Phys Rev Lett; 2017 Jun; 118(22):220402. PubMed ID: 28621974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibration via Gaussification in Fermionic Lattice Systems.
    Gluza M; Krumnow C; Friesdorf M; Gogolin C; Eisert J
    Phys Rev Lett; 2016 Nov; 117(19):190602. PubMed ID: 27858458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermionic neural-network states for ab-initio electronic structure.
    Choo K; Mezzacapo A; Carleo G
    Nat Commun; 2020 May; 11(1):2368. PubMed ID: 32398658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensor product approximation with optimal rank in quantum chemistry.
    Chinnamsetty SR; Espig M; Khoromskij BN; Hackbusch W; Flad HJ
    J Chem Phys; 2007 Aug; 127(8):084110. PubMed ID: 17764232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetric Logarithmic Derivative of Fermionic Gaussian States.
    Carollo A; Spagnolo B; Valenti D
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermionic wave functions from neural-network constrained hidden states.
    Robledo Moreno J; Carleo G; Georges A; Stokes J
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2122059119. PubMed ID: 35921435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Phys; 2017 Jan; 146(4):044119. PubMed ID: 28147540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
    Khoromskaia V; Khoromskij BN
    Phys Chem Chem Phys; 2015 Dec; 17(47):31491-509. PubMed ID: 26016539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensor Network Representations of Parton Wave Functions.
    Wu YH; Wang L; Tu HH
    Phys Rev Lett; 2020 Jun; 124(24):246401. PubMed ID: 32639802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong-weak duality via Jordan-Wigner transformation: Using fermionic methods for strongly correlated su(2) spin systems.
    Henderson TM; Chen GP; Scuseria GE
    J Chem Phys; 2022 Nov; 157(19):194114. PubMed ID: 36414454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic energies from coupled fermionic "Zombie" states' imaginary time evolution.
    Bramley OA; Hele TJH; Shalashilin DV
    J Chem Phys; 2022 May; 156(17):174116. PubMed ID: 35525640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach.
    Sirjoosingh A; Pak MV; Brorsen KR; Hammes-Schiffer S
    J Chem Phys; 2015 Jun; 142(21):214107. PubMed ID: 26049479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.