These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 27911774)
1. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Yu K; Park B; Kim G; Kim CH; Park S; Kim J; Jung S; Jeong S; Kwon S; Kang H; Kim J; Yoon MH; Lee K Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14261-14266. PubMed ID: 27911774 [TBL] [Abstract][Full Text] [Related]
2. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. Zhang J; Wang C; Zhou C ACS Nano; 2012 Aug; 6(8):7412-9. PubMed ID: 22788112 [TBL] [Abstract][Full Text] [Related]
3. Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes. Yu K; Lee JM; Kim J; Kim G; Kang H; Park B; Ho Kahng Y; Kwon S; Lee S; Lee BH; Kim J; Park HI; Kim SO; Lee K Nano Lett; 2014 Dec; 14(12):7100-6. PubMed ID: 25372930 [TBL] [Abstract][Full Text] [Related]
4. The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. Angunawela I; Nahid MM; Ghasemi M; Amassian A; Ade H; Gadisa A ACS Appl Mater Interfaces; 2020 Jun; 12(23):26239-26249. PubMed ID: 32410453 [TBL] [Abstract][Full Text] [Related]
5. Flexible and Transparent Thin-Film Transistors Based on Two-Dimensional Materials for Active-Matrix Display. Park H; Oh DS; Lee KJ; Jung DY; Lee S; Yoo S; Choi SY ACS Appl Mater Interfaces; 2020 Jan; 12(4):4749-4754. PubMed ID: 31896251 [TBL] [Abstract][Full Text] [Related]
6. Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors. Zhao P; Tang Q; Zhao X; Tong Y; Liu Y J Colloid Interface Sci; 2018 Jun; 520():58-63. PubMed ID: 29529461 [TBL] [Abstract][Full Text] [Related]
7. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics. Han JH; Kim DH; Jeong EG; Lee TW; Lee MK; Park JW; Lee H; Choi KC ACS Appl Mater Interfaces; 2017 May; 9(19):16343-16350. PubMed ID: 28447446 [TBL] [Abstract][Full Text] [Related]
8. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics. Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Spin Transport of Conjugated Polymer in the Semiconductor/Insulating Polymer Blend. Li T; Xu L; Xiao X; Chen F; Cao L; Wu W; Tong W; Zhang F ACS Appl Mater Interfaces; 2020 Jan; 12(2):2708-2716. PubMed ID: 31894693 [TBL] [Abstract][Full Text] [Related]
10. Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer. Kim JS; Lu L; Sreearunothai P; Seeley A; Yim KH; Petrozza A; Murphy CE; Beljonne D; Cornil J; Friend RH J Am Chem Soc; 2008 Oct; 130(39):13120-31. PubMed ID: 18767836 [TBL] [Abstract][Full Text] [Related]
11. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Lei T; Pochorovski I; Bao Z Acc Chem Res; 2017 Apr; 50(4):1096-1104. PubMed ID: 28358486 [TBL] [Abstract][Full Text] [Related]
12. Wafer-scale arrays of nonvolatile polymer memories with microprinted semiconducting small molecule/polymer blends. Bae I; Hwang SK; Kim RH; Kang SJ; Park C ACS Appl Mater Interfaces; 2013 Nov; 5(21):10696-704. PubMed ID: 24070419 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of high performance/highly functional field-effect transistor devices based on [6]phenacene thin films. Eguchi R; He X; Hamao S; Goto H; Okamoto H; Gohda S; Sato K; Kubozono Y Phys Chem Chem Phys; 2013 Dec; 15(47):20611-7. PubMed ID: 24185947 [TBL] [Abstract][Full Text] [Related]
14. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. Kim MJ; Jung AR; Lee M; Kim D; Ro S; Jin SM; Nguyen HD; Yang J; Lee KK; Lee E; Kang MS; Kim H; Choi JH; Kim B; Cho JH ACS Appl Mater Interfaces; 2017 Nov; 9(46):40503-40515. PubMed ID: 29090568 [TBL] [Abstract][Full Text] [Related]
15. Attaining Melt Processing of Complementary Semiconducting Polymer Blends at 130 °C via Side-Chain Engineering. Gumyusenge A; Zhao X; Zhao Y; Mei J ACS Appl Mater Interfaces; 2018 Feb; 10(5):4904-4909. PubMed ID: 29338181 [TBL] [Abstract][Full Text] [Related]
16. Polymer-Laminated Ti Lee S; Kim EH; Yu S; Kim H; Park C; Lee SW; Han H; Jin W; Lee K; Lee CE; Jang J; Koo CM; Park C ACS Nano; 2021 May; 15(5):8940-8952. PubMed ID: 33983015 [TBL] [Abstract][Full Text] [Related]
17. Morphology and Electronic Properties of Semiconducting Polymer and Branched Polyethylene Blends. Selivanova M; Chuang CH; Billet B; Malik A; Xiang P; Landry E; Chiu YC; Rondeau-Gagné S ACS Appl Mater Interfaces; 2019 Apr; 11(13):12723-12732. PubMed ID: 30854843 [TBL] [Abstract][Full Text] [Related]
18. Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications. Jin SW; Lee YH; Yeom KM; Yun J; Park H; Jeong YR; Hong SY; Lee G; Oh SY; Lee JH; Noh JH; Ha JS ACS Appl Mater Interfaces; 2018 Sep; 10(36):30706-30715. PubMed ID: 30113812 [TBL] [Abstract][Full Text] [Related]
19. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Ju S; Li J; Liu J; Chen PC; Ha YG; Ishikawa F; Chang H; Zhou C; Facchetti A; Janes DB; Marks TJ Nano Lett; 2008 Apr; 8(4):997-1004. PubMed ID: 18069874 [TBL] [Abstract][Full Text] [Related]
20. Copper Mesh Templated by Breath-Figure Polymer Films as Flexible Transparent Electrodes for Organic Photovoltaic Devices. Zhou W; Chen J; Li Y; Wang D; Chen J; Feng X; Huang Z; Liu R; Lin X; Zhang H; Mi B; Ma Y ACS Appl Mater Interfaces; 2016 May; 8(17):11122-7. PubMed ID: 27082139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]