These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 27911791)
1. A functional role for intrinsic disorder in the tau-tubulin complex. Melo AM; Coraor J; Alpha-Cobb G; Elbaum-Garfinkle S; Nath A; Rhoades E Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14336-14341. PubMed ID: 27911791 [TBL] [Abstract][Full Text] [Related]
2. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Kadavath H; Hofele RV; Biernat J; Kumar S; Tepper K; Urlaub H; Mandelkow E; Zweckstetter M Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7501-6. PubMed ID: 26034266 [TBL] [Abstract][Full Text] [Related]
3. Insights into tau function and dysfunction through single-molecule fluorescence. Melo AM; Elbaum-Garfinkle S; Rhoades E Methods Cell Biol; 2017; 141():27-44. PubMed ID: 28882307 [TBL] [Abstract][Full Text] [Related]
4. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. McKibben KM; Rhoades E J Biol Chem; 2019 Dec; 294(50):19381-19394. PubMed ID: 31699899 [TBL] [Abstract][Full Text] [Related]
5. Tau mutants bind tubulin heterodimers with enhanced affinity. Elbaum-Garfinkle S; Cobb G; Compton JT; Li XH; Rhoades E Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6311-6. PubMed ID: 24733915 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of Tau-promoted microtubule assembly as probed by NMR spectroscopy. Gigant B; Landrieu I; Fauquant C; Barbier P; Huvent I; Wieruszeski JM; Knossow M; Lippens G J Am Chem Soc; 2014 Sep; 136(36):12615-23. PubMed ID: 25162583 [TBL] [Abstract][Full Text] [Related]
7. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes. Fung HYJ; McKibben KM; Ramirez J; Gupta K; Rhoades E Structure; 2020 Mar; 28(3):378-384.e4. PubMed ID: 31995742 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells. Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998 [TBL] [Abstract][Full Text] [Related]
10. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. De Bessa T; Breuzard G; Allegro D; Devred F; Peyrot V; Barbier P Methods Mol Biol; 2017; 1523():61-85. PubMed ID: 27975244 [TBL] [Abstract][Full Text] [Related]
11. NMR Meets Tau: Insights into Its Function and Pathology. Lippens G; Landrieu I; Smet C; Huvent I; Gandhi NS; Gigant B; Despres C; Qi H; Lopez J Biomolecules; 2016 Jun; 6(2):. PubMed ID: 27338491 [TBL] [Abstract][Full Text] [Related]
12. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
14. The Binding Mode of a Tau Peptide with Tubulin. Kadavath H; Cabrales Fontela Y; Jaremko M; Jaremko Ł; Overkamp K; Biernat J; Mandelkow E; Zweckstetter M Angew Chem Int Ed Engl; 2018 Mar; 57(12):3246-3250. PubMed ID: 29314492 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of tau-microtubule interaction using FRET. Di Maïo IL; Barbier P; Allegro D; Brault C; Peyrot V Int J Mol Sci; 2014 Aug; 15(8):14697-714. PubMed ID: 25196605 [TBL] [Abstract][Full Text] [Related]
16. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Janning D; Igaev M; Sündermann F; Brühmann J; Beutel O; Heinisch JJ; Bakota L; Piehler J; Junge W; Brandt R Mol Biol Cell; 2014 Nov; 25(22):3541-51. PubMed ID: 25165145 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule imaging of Tau dynamics on the microtubule surface. Stern JL; Lessard DV; Ali R; Berger CL Methods Cell Biol; 2017; 141():135-154. PubMed ID: 28882299 [TBL] [Abstract][Full Text] [Related]
18. Tau Binds to Multiple Tubulin Dimers with Helical Structure. Li XH; Culver JA; Rhoades E J Am Chem Soc; 2015 Jul; 137(29):9218-21. PubMed ID: 26165802 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. Goode BL; Feinstein SC J Cell Biol; 1994 Mar; 124(5):769-82. PubMed ID: 8120098 [TBL] [Abstract][Full Text] [Related]
20. Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions. Devred F; Barbier P; Douillard S; Monasterio O; Andreu JM; Peyrot V Biochemistry; 2004 Aug; 43(32):10520-31. PubMed ID: 15301550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]