These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 27911791)
21. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Martinho M; Allegro D; Huvent I; Chabaud C; Etienne E; Kovacic H; Guigliarelli B; Peyrot V; Landrieu I; Belle V; Barbier P Sci Rep; 2018 Sep; 8(1):13846. PubMed ID: 30218010 [TBL] [Abstract][Full Text] [Related]
22. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Panda D; Goode BL; Feinstein SC; Wilson L Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769 [TBL] [Abstract][Full Text] [Related]
23. Regulation of Microtubule Assembly by Tau and not by Pin1. Kutter S; Eichner T; Deaconescu AM; Kern D J Mol Biol; 2016 May; 428(9 Pt A):1742-59. PubMed ID: 26996940 [TBL] [Abstract][Full Text] [Related]
24. NMR investigation of the interaction between the neuronal protein tau and the microtubules. Sillen A; Barbier P; Landrieu I; Lefebvre S; Wieruszeski JM; Leroy A; Peyrot V; Lippens G Biochemistry; 2007 Mar; 46(11):3055-64. PubMed ID: 17311412 [TBL] [Abstract][Full Text] [Related]
26. Hyperphosphorylation of intrinsically disordered tau protein induces an amyloidogenic shift in its conformational ensemble. Zhu S; Shala A; Bezginov A; Sljoka A; Audette G; Wilson DJ PLoS One; 2015; 10(3):e0120416. PubMed ID: 25767879 [TBL] [Abstract][Full Text] [Related]
27. First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation. Devred F; Douillard S; Briand C; Peyrot V FEBS Lett; 2002 Jul; 523(1-3):247-51. PubMed ID: 12123840 [TBL] [Abstract][Full Text] [Related]
28. Dynamical decoration of stabilized-microtubules by Tau-proteins. Hervy J; Bicout DJ Sci Rep; 2019 Aug; 9(1):12473. PubMed ID: 31462746 [TBL] [Abstract][Full Text] [Related]
29. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628 [TBL] [Abstract][Full Text] [Related]
30. Identification of an aggregation-prone structure of tau. Elbaum-Garfinkle S; Rhoades E J Am Chem Soc; 2012 Oct; 134(40):16607-13. PubMed ID: 22998648 [TBL] [Abstract][Full Text] [Related]
31. Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly. Fauquant C; Redeker V; Landrieu I; Wieruszeski JM; Verdegem D; Laprévote O; Lippens G; Gigant B; Knossow M J Biol Chem; 2011 Sep; 286(38):33358-68. PubMed ID: 21757739 [TBL] [Abstract][Full Text] [Related]
32. Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation. Brandt R; Lee G; Teplow DB; Shalloway D; Abdel-Ghany M J Biol Chem; 1994 Apr; 269(16):11776-82. PubMed ID: 8163474 [TBL] [Abstract][Full Text] [Related]
33. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Hernández-Vega A; Braun M; Scharrel L; Jahnel M; Wegmann S; Hyman BT; Alberti S; Diez S; Hyman AA Cell Rep; 2017 Sep; 20(10):2304-2312. PubMed ID: 28877466 [TBL] [Abstract][Full Text] [Related]
34. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Eidenmüller J; Fath T; Maas T; Pool M; Sontag E; Brandt R Biochem J; 2001 Aug; 357(Pt 3):759-67. PubMed ID: 11463346 [TBL] [Abstract][Full Text] [Related]
35. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. Chau MF; Radeke MJ; de Inés C; Barasoain I; Kohlstaedt LA; Feinstein SC Biochemistry; 1998 Dec; 37(51):17692-703. PubMed ID: 9922135 [TBL] [Abstract][Full Text] [Related]
36. Effect of altered solution conditions on tau conformational dynamics: Plausible implication on order propensity and aggregation. Jebarupa B; Muralidharan M; Srinivasu BY; Mandal AK; Mitra G Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):668-679. PubMed ID: 29630971 [TBL] [Abstract][Full Text] [Related]
37. The mechanism of Hsp90-induced oligomerizaton of Tau. Weickert S; Wawrzyniuk M; John LH; Rüdiger SGD; Drescher M Sci Adv; 2020 Mar; 6(11):eaax6999. PubMed ID: 32201713 [TBL] [Abstract][Full Text] [Related]
38. Altered tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro. Karima O; Riazi G; Khodadadi S; Aryapour H; Khalili MA; Yousefi L; Moosavi-Movahedi AA FEBS Lett; 2012 Nov; 586(21):3914-9. PubMed ID: 23041345 [TBL] [Abstract][Full Text] [Related]
39. Interactions between Tau and Different Conformations of Tubulin: Implications for Tau Function and Mechanism. Duan AR; Jonasson EM; Alberico EO; Li C; Scripture JP; Miller RA; Alber MS; Goodson HV J Mol Biol; 2017 May; 429(9):1424-1438. PubMed ID: 28322917 [TBL] [Abstract][Full Text] [Related]
40. Can any "non-specific charge modification within microtubule binding domains of Tau" be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. Jangholi A; Ashrafi-Kooshk MR; Arab SS; Karima S; Poorebrahim M; Ghadami SA; Moosavi-Movahedi AA; Khodarahmi R Int J Biol Macromol; 2018 Apr; 109():188-204. PubMed ID: 29248553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]