These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 27911791)
41. Minireview - Microtubules and Tubulin Oligomers: Shape Transitions and Assembly by Intrinsically Disordered Protein Tau and Cationic Biomolecules. Safinya CR; Chung PJ; Song C; Li Y; Miller HP; Choi MC; Raviv U; Ewert KK; Wilson L; Feinstein SC Langmuir; 2019 Dec; 35(48):15970-15978. PubMed ID: 31539262 [TBL] [Abstract][Full Text] [Related]
42. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. Kar S; Fan J; Smith MJ; Goedert M; Amos LA EMBO J; 2003 Jan; 22(1):70-7. PubMed ID: 12505985 [TBL] [Abstract][Full Text] [Related]
43. Intrinsically disordered tubulin tails: complex tuners of microtubule functions? Roll-Mecak A Semin Cell Dev Biol; 2015 Jan; 37():11-9. PubMed ID: 25307498 [TBL] [Abstract][Full Text] [Related]
44. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. Joo Y; Schumacher B; Landrieu I; Bartel M; Smet-Nocca C; Jang A; Choi HS; Jeon NL; Chang KA; Kim HS; Ottmann C; Suh YH FASEB J; 2015 Oct; 29(10):4133-44. PubMed ID: 26103986 [TBL] [Abstract][Full Text] [Related]
45. Modification of tau to an Alzheimer's type protein interferes with its interaction with microtubules. González C; Farías G; Maccioni RB Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1117-27. PubMed ID: 9846894 [TBL] [Abstract][Full Text] [Related]
46. Conformational change and GTPase activity of human tubulin: A comparative study on Alzheimer's disease and healthy brain. Rajaei S; Karima S; Sepasi Tehrani H; Shateri S; Mahmoodi Baram S; Mahdavi M; Mokhtari F; Alimohammadi A; Tafakhori A; Amiri A; Aghamollaii V; Fatemi H; Rajabibazl M; Kobarfard F; Gorji A J Neurochem; 2020 Sep; 155(2):207-224. PubMed ID: 32196663 [TBL] [Abstract][Full Text] [Related]
47. Tau protein binds to microtubules through a flexible array of distributed weak sites. Butner KA; Kirschner MW J Cell Biol; 1991 Nov; 115(3):717-30. PubMed ID: 1918161 [TBL] [Abstract][Full Text] [Related]
48. Secondary structures transition of tau protein with intrinsically disordered proteins specific force field. Dan A; Chen HF Chem Biol Drug Des; 2019 Mar; 93(3):242-253. PubMed ID: 30259679 [TBL] [Abstract][Full Text] [Related]
49. Disease-Associated Tau Phosphorylation Hinders Tubulin Assembly within Tau Condensates. Savastano A; Flores D; Kadavath H; Biernat J; Mandelkow E; Zweckstetter M Angew Chem Int Ed Engl; 2021 Jan; 60(2):726-730. PubMed ID: 33017094 [TBL] [Abstract][Full Text] [Related]
50. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats. Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841 [TBL] [Abstract][Full Text] [Related]
51. Structural Insights into the Role of the Proline Rich Region in Tau Function. Acosta K; Brue CR; Kim HJ; Holubovska P; Mayne L; Murakami K; Rhoades E bioRxiv; 2024 Sep; ():. PubMed ID: 39386529 [TBL] [Abstract][Full Text] [Related]
52. Visualization of Tau⁻Tubulin Interaction in a Living Cell Using Bifluorescence Complementation Technique. Shin S; Lim S; Jeong H; Kwan LT; Kim YK Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30274285 [TBL] [Abstract][Full Text] [Related]
53. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. Al-Bassam J; Ozer RS; Safer D; Halpain S; Milligan RA J Cell Biol; 2002 Jun; 157(7):1187-96. PubMed ID: 12082079 [TBL] [Abstract][Full Text] [Related]
54. Structural Basis of Small Molecule Targetability of Monomeric Tau Protein. Kiss R; Csizmadia G; Solti K; Keresztes A; Zhu M; Pickhardt M; Mandelkow E; Tóth G ACS Chem Neurosci; 2018 Dec; 9(12):2997-3006. PubMed ID: 29944336 [TBL] [Abstract][Full Text] [Related]
55. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Goode BL; Denis PE; Panda D; Radeke MJ; Miller HP; Wilson L; Feinstein SC Mol Biol Cell; 1997 Feb; 8(2):353-65. PubMed ID: 9190213 [TBL] [Abstract][Full Text] [Related]
56. Tau repeat regions contain conserved histidine residues that modulate microtubule-binding in response to changes in pH. Charafeddine RA; Cortopassi WA; Lak P; Tan R; McKenney RJ; Jacobson MP; Barber DL; Wittmann T J Biol Chem; 2019 May; 294(22):8779-8790. PubMed ID: 30992364 [TBL] [Abstract][Full Text] [Related]
57. The C terminus of tubulin, a versatile partner for cationic molecules: binding of Tau, polyamines, and calcium. Lefèvre J; Chernov KG; Joshi V; Delga S; Toma F; Pastré D; Curmi PA; Savarin P J Biol Chem; 2011 Jan; 286(4):3065-78. PubMed ID: 21062741 [TBL] [Abstract][Full Text] [Related]
58. Measuring Interactions Between Tau and Aggregation Inducers with Single-Molecule Förster Resonance Energy Transfer. Wickramasinghe SP; Rhoades E Methods Mol Biol; 2020; 2141():755-775. PubMed ID: 32696388 [TBL] [Abstract][Full Text] [Related]
59. Estramustine-phosphate binds to a tubulin binding domain on microtubule-associated proteins MAP-2 and tau. Moraga D; Rivas-Berrios A; Farías G; Wallin M; Maccioni RB Biochim Biophys Acta; 1992 May; 1121(1-2):97-103. PubMed ID: 1599956 [TBL] [Abstract][Full Text] [Related]
60. The binding and phosphorylation of Thr231 is critical for Tau's hyperphosphorylation and functional regulation by glycogen synthase kinase 3beta. Lin YT; Cheng JT; Liang LC; Ko CY; Lo YK; Lu PJ J Neurochem; 2007 Oct; 103(2):802-13. PubMed ID: 17680984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]