These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 27911795)
41. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice. Maekawa R; Seino Y; Ogata H; Murase M; Iida A; Hosokawa K; Joo E; Harada N; Tsunekawa S; Hamada Y; Oiso Y; Inagaki N; Hayashi Y; Arima H J Nutr Biochem; 2017 Nov; 49():71-79. PubMed ID: 28886439 [TBL] [Abstract][Full Text] [Related]
42. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Liang Q; Zhong L; Zhang J; Wang Y; Bornstein SR; Triggle CR; Ding H; Lam KS; Xu A Diabetes; 2014 Dec; 63(12):4064-75. PubMed ID: 25024372 [TBL] [Abstract][Full Text] [Related]
43. The Klotho gene family and the endocrine fibroblast growth factors. Kurosu H; Kuro-o M Curr Opin Nephrol Hypertens; 2008 Jul; 17(4):368-72. PubMed ID: 18660672 [TBL] [Abstract][Full Text] [Related]
44. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Zhao Y; Meng C; Wang Y; Huang H; Liu W; Zhang JF; Zhao H; Feng B; Leung PS; Xia Y Am J Physiol Endocrinol Metab; 2016 Feb; 310(4):E289-300. PubMed ID: 26670488 [TBL] [Abstract][Full Text] [Related]
45. Spatial distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, subiculum, and amygdala. Bono BS; Koziel Ly NK; Miller PA; Williams-Ikhenoba J; Dumiaty Y; Chee MJ J Comp Neurol; 2022 Jul; 530(10):1634-1657. PubMed ID: 35143049 [TBL] [Abstract][Full Text] [Related]
46. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver. Zhang A; Sieglaff DH; York JP; Suh JH; Ayers SD; Winnier GE; Kharitonenkov A; Pin C; Zhang P; Webb P; Xia X J Endocrinol; 2015 Mar; 224(3):289-301. PubMed ID: 25501997 [TBL] [Abstract][Full Text] [Related]
47. Peripherally derived FGF21 promotes remyelination in the central nervous system. Kuroda M; Muramatsu R; Maedera N; Koyama Y; Hamaguchi M; Fujimura H; Yoshida M; Konishi M; Itoh N; Mochizuki H; Yamashita T J Clin Invest; 2017 Sep; 127(9):3496-3509. PubMed ID: 28825598 [TBL] [Abstract][Full Text] [Related]
48. Fibroblast growth factor 21 enhances angiogenesis and wound healing of human brain microvascular endothelial cells by activating PPARγ. Huang W; Shao M; Liu H; Chen J; Hu J; Zhu L; Liu F; Wang D; Zou Y; Xiong Y; Wang X J Pharmacol Sci; 2019 Jun; 140(2):120-127. PubMed ID: 31255518 [TBL] [Abstract][Full Text] [Related]
49. Low alcohol preference among the "high alcohol preference" C57/BL10 mice; factors affecting such preference. O'Callaghan MJ; Croft AP; Watson WP; Brooks SP; Little HJ Pharmacol Biochem Behav; 2002 May; 72(1-2):475-81. PubMed ID: 11900822 [TBL] [Abstract][Full Text] [Related]
50. Impact of aging and caloric restriction on fibroblast growth factor 21 signaling in rat white adipose tissue. Fujii N; Uta S; Kobayashi M; Sato T; Okita N; Higami Y Exp Gerontol; 2019 Apr; 118():55-64. PubMed ID: 30620889 [TBL] [Abstract][Full Text] [Related]
51. FGF21 N- and C-termini play different roles in receptor interaction and activation. Yie J; Hecht R; Patel J; Stevens J; Wang W; Hawkins N; Steavenson S; Smith S; Winters D; Fisher S; Cai L; Belouski E; Chen C; Michaels ML; Li YS; Lindberg R; Wang M; Véniant M; Xu J FEBS Lett; 2009 Jan; 583(1):19-24. PubMed ID: 19059246 [TBL] [Abstract][Full Text] [Related]
52. Fasting decreases plasma FGF21 in obese subjects and the expression of FGF21 receptors in adipose tissue in both lean and obese subjects. Nygaard EB; Ørskov C; Almdal T; Vestergaard H; Andersen B J Endocrinol; 2018 Oct; 239(1):73–80. PubMed ID: 30307155 [TBL] [Abstract][Full Text] [Related]
53. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Søberg S; Sandholt CH; Jespersen NZ; Toft U; Madsen AL; von Holstein-Rathlou S; Grevengoed TJ; Christensen KB; Bredie WLP; Potthoff MJ; Solomon TPJ; Scheele C; Linneberg A; Jørgensen T; Pedersen O; Hansen T; Gillum MP; Grarup N Cell Metab; 2017 May; 25(5):1045-1053.e6. PubMed ID: 28467924 [TBL] [Abstract][Full Text] [Related]
54. FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis. Mottillo EP; Desjardins EM; Fritzen AM; Zou VZ; Crane JD; Yabut JM; Kiens B; Erion DM; Lanba A; Granneman JG; Talukdar S; Steinberg GR Mol Metab; 2017 Jun; 6(6):471-481. PubMed ID: 28580278 [TBL] [Abstract][Full Text] [Related]
55. Both genetic deletion and pharmacological blockade of lysophosphatidic acid LPA1 receptor results in increased alcohol consumption. Castilla-Ortega E; Pavón FJ; Sánchez-Marín L; Estivill-Torrús G; Pedraza C; Blanco E; Suárez J; Santín L; Rodríguez de Fonseca F; Serrano A Neuropharmacology; 2016 Apr; 103():92-103. PubMed ID: 26700247 [TBL] [Abstract][Full Text] [Related]
56. Hepatic FGF21 production is increased in late pregnancy in the mouse. Cui Y; Giesy SL; Hassan M; Davis K; Zhao S; Boisclair YR Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(3):R290-8. PubMed ID: 24898837 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Schumann G; Coin LJ; Lourdusamy A; Charoen P; Berger KH; Stacey D; Desrivières S; Aliev FA; Khan AA; Amin N; Aulchenko YS; Bakalkin G; Bakker SJ; Balkau B; Beulens JW; Bilbao A; de Boer RA; Beury D; Bots ML; Breetvelt EJ; Cauchi S; Cavalcanti-Proença C; Chambers JC; Clarke TK; Dahmen N; de Geus EJ; Dick D; Ducci F; Easton A; Edenberg HJ; Esko T; Fernández-Medarde A; Foroud T; Freimer NB; Girault JA; Grobbee DE; Guarrera S; Gudbjartsson DF; Hartikainen AL; Heath AC; Hesselbrock V; Hofman A; Hottenga JJ; Isohanni MK; Kaprio J; Khaw KT; Kuehnel B; Laitinen J; Lobbens S; Luan J; Mangino M; Maroteaux M; Matullo G; McCarthy MI; Mueller C; Navis G; Numans ME; Núñez A; Nyholt DR; Onland-Moret CN; Oostra BA; O'Reilly PF; Palkovits M; Penninx BW; Polidoro S; Pouta A; Prokopenko I; Ricceri F; Santos E; Smit JH; Soranzo N; Song K; Sovio U; Stumvoll M; Surakk I; Thorgeirsson TE; Thorsteinsdottir U; Troakes C; Tyrfingsson T; Tönjes A; Uiterwaal CS; Uitterlinden AG; van der Harst P; van der Schouw YT; Staehlin O; Vogelzangs N; Vollenweider P; Waeber G; Wareham NJ; Waterworth DM; Whitfield JB; Wichmann EH; Willemsen G; Witteman JC; Yuan X; Zhai G; Zhao JH; Zhang W; Martin NG; Metspalu A; Doering A; Scott J; Spector TD; Loos RJ; Boomsma DI; Mooser V; Peltonen L; Stefansson K; van Duijn CM; Vineis P; Sommer WH; Kooner JS; Spanagel R; Heberlein UA; Jarvelin MR; Elliott P Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7119-24. PubMed ID: 21471458 [TBL] [Abstract][Full Text] [Related]
59. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. Somm E; Henry H; Bruce SJ; Aeby S; Rosikiewicz M; Sykiotis GP; Asrih M; Jornayvaz FR; Denechaud PD; Albrecht U; Mohammadi M; Dwyer A; Acierno JS; Schoonjans K; Fajas L; Greub G; Pitteloud N JCI Insight; 2017 Apr; 2(8):. PubMed ID: 28422755 [TBL] [Abstract][Full Text] [Related]