BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27911811)

  • 41. Redox control of aryl sulfotransferase specificity.
    Marshall AD; McPhie P; Jakoby WB
    Arch Biochem Biophys; 2000 Oct; 382(1):95-104. PubMed ID: 11051102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition.
    Gamage NU; Duggleby RG; Barnett AC; Tresillian M; Latham CF; Liyou NE; McManus ME; Martin JL
    J Biol Chem; 2003 Feb; 278(9):7655-62. PubMed ID: 12471039
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase.
    Teramoto T; Sakakibara Y; Inada K; Kurogi K; Liu MC; Suiko M; Kimura M; Kakuta Y
    FEBS Lett; 2008 Nov; 582(28):3909-14. PubMed ID: 18977225
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of posttranslational regulation of phenol sulfotransferase: expression of two enzyme forms through redox modification and nucleotide binding.
    Su TM; Yang YS
    Biochemistry; 2003 Jun; 42(22):6863-70. PubMed ID: 12779341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Frequency distribution of phenol sulfotransferase 1A1 activity in platelet cells from healthy Japanese subjects.
    Ohtake E; Kakihara F; Matsumoto N; Ozawa S; Ohno Y; Hasegawa S; Suzuki H; Kubota T
    Eur J Pharm Sci; 2006 Jul; 28(4):272-7. PubMed ID: 16621480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2.
    Lu J; Li H; Zhang J; Li M; Liu MY; An X; Liu MC; Chang W
    Biochem Biophys Res Commun; 2010 May; 396(2):429-34. PubMed ID: 20417180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibitory effects of various beverages on human recombinant sulfotransferase isoforms SULT1A1 and SULT1A3.
    Nishimuta H; Ohtani H; Tsujimoto M; Ogura K; Hiratsuka A; Sawada Y
    Biopharm Drug Dispos; 2007 Dec; 28(9):491-500. PubMed ID: 17876860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine.
    Nys M; Wijckmans E; Farinha A; Yoluk Ö; Andersson M; Brams M; Spurny R; Peigneur S; Tytgat J; Lindahl E; Ulens C
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6696-E6703. PubMed ID: 27791038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3.
    Barnett AC; Tsvetanov S; Gamage N; Martin JL; Duggleby RG; McManus ME
    J Biol Chem; 2004 Apr; 279(18):18799-805. PubMed ID: 14871892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies.
    Chen D; Wang CY; Lambert JD; Ai N; Welsh WJ; Yang CS
    Biochem Pharmacol; 2005 May; 69(10):1523-31. PubMed ID: 15857617
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoaffinity labeling probe for the substrate binding site of human phenol sulfotransferase (SULT1A1): 7-azido-4-methylcoumarin.
    Chen G; Battaglia E; Senay C; Falany CN; Radominska-Pandya A
    Protein Sci; 1999 Oct; 8(10):2151-7. PubMed ID: 10548061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytosolic sulfotransferase 1A1 regulates HIV-1 minus-strand DNA elongation in primary human monocyte-derived macrophages.
    Swann J; Murry J; Young JA
    Virol J; 2016 Feb; 13():30. PubMed ID: 26906565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In silico mechanistic profiling to probe small molecule binding to sulfotransferases.
    Martiny VY; Carbonell P; Lagorce D; Villoutreix BO; Moroy G; Miteva MA
    PLoS One; 2013; 8(9):e73587. PubMed ID: 24039991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. (-)-Epigallocatechin-3-gallate, a potential inhibitor to human dicarbonyl/L-xylulose reductase.
    Hu XH; Ding LY; Huang WX; Yang XM; Xie F; Xu M; Yu L
    J Biochem; 2013 Aug; 154(2):167-75. PubMed ID: 23661708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry.
    Crump MP; Ceska TA; Spyracopoulos L; Henry A; Archibald SC; Alexander R; Taylor RJ; Findlow SC; O'Connell J; Robinson MK; Shock A
    Biochemistry; 2004 Mar; 43(9):2394-404. PubMed ID: 14992576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Mechanism for the (-)-Epigallocatechin Gallate-Induced Toxic to Nontoxic Remodeling of Aβ Oligomers.
    Ahmed R; VanSchouwen B; Jafari N; Ni X; Ortega J; Melacini G
    J Am Chem Soc; 2017 Oct; 139(39):13720-13734. PubMed ID: 28841302
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma.
    Bhattacharjee R; Devi A; Mishra S
    J Mol Model; 2015 Oct; 21(10):272. PubMed ID: 26419972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site.
    Gradisar H; Pristovsek P; Plaper A; Jerala R
    J Med Chem; 2007 Jan; 50(2):264-71. PubMed ID: 17228868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.