BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 27911841)

  • 1. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing.
    Moffitt JR; Hao J; Bambah-Mukku D; Lu T; Dulac C; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14456-14461. PubMed ID: 27911841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed detection of RNA using MERFISH and branched DNA amplification.
    Xia C; Babcock HP; Moffitt JR; Zhuang X
    Sci Rep; 2019 May; 9(1):7721. PubMed ID: 31118500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH).
    Moffitt JR; Zhuang X
    Methods Enzymol; 2016; 572():1-49. PubMed ID: 27241748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy.
    Wang G; Moffitt JR; Zhuang X
    Sci Rep; 2018 Mar; 8(1):4847. PubMed ID: 29555914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
    Chen KH; Boettiger AN; Moffitt JR; Wang S; Zhuang X
    Science; 2015 Apr; 348(6233):aaa6090. PubMed ID: 25858977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MERFISHing for spatial context.
    Shalek AK; Satija R
    Trends Immunol; 2015 Jul; 36(7):390-1. PubMed ID: 26013647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ProbeDealer is a convenient tool for designing probes for highly multiplexed fluorescence in situ hybridization.
    Hu M; Yang B; Cheng Y; Radda JSD; Chen Y; Liu M; Wang S
    Sci Rep; 2020 Dec; 10(1):22031. PubMed ID: 33328483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omics goes spatial epigenomics.
    Schueder F; Bewersdorf J
    Cell; 2022 Nov; 185(23):4253-4255. PubMed ID: 36368304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses.
    Liu S; Punthambaker S; Iyer EPR; Ferrante T; Goodwin D; Fürth D; Pawlowski AC; Jindal K; Tam JM; Mifflin L; Alon S; Sinha A; Wassie AT; Chen F; Cheng A; Willocq V; Meyer K; Ling KH; Camplisson CK; Kohman RE; Aach J; Lee JH; Yankner BA; Boyden ES; Church GM
    Nucleic Acids Res; 2021 Jun; 49(10):e58. PubMed ID: 33693773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating transcripts with probes and imaging technology.
    Itzkovitz S; van Oudenaarden A
    Nat Methods; 2011 Apr; 8(4 Suppl):S12-9. PubMed ID: 21451512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue.
    Gyllborg D; Langseth CM; Qian X; Choi E; Salas SM; Hilscher MM; Lein ES; Nilsson M
    Nucleic Acids Res; 2020 Nov; 48(19):e112. PubMed ID: 32990747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell segmentation in imaging-based spatial transcriptomics.
    Petukhov V; Xu RJ; Soldatov RA; Cadinu P; Khodosevich K; Moffitt JR; Kharchenko PV
    Nat Biotechnol; 2022 Mar; 40(3):345-354. PubMed ID: 34650268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive and Multiplexed In Situ RNA Profiling with Cleavable Fluorescent Tyramide.
    Xiao L; Labaer J; Guo J
    Cells; 2021 May; 10(6):. PubMed ID: 34063986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.