These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27911941)

  • 81. Combined effect of temperature and zinc on Caenorhabditis elegans wild type and daf-21 mutant strains.
    Wang Y; Ezemaduka AN
    J Therm Biol; 2014 Apr; 41():16-20. PubMed ID: 24679967
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A liquid-based method for the assessment of bacterial pathogenicity using the nematode Caenorhabditis elegans.
    Smith MP; Laws TR; Atkins TP; Oyston PC; de Pomerai DI; Titball RW
    FEMS Microbiol Lett; 2002 May; 210(2):181-5. PubMed ID: 12044672
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The interplay between chemical speciation and physiology determines the bioaccumulation and toxicity of Cu(II) and Cd(II) to Caenorhabditis elegans.
    Moyson S; Town RM; Joosen S; Husson SJ; Blust R
    J Appl Toxicol; 2019 Feb; 39(2):282-293. PubMed ID: 30221411
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction.
    Ventura N; Rea SL
    Biotechnol J; 2007 May; 2(5):584-95. PubMed ID: 17443764
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans.
    Coates JC; de Bono M
    Nature; 2002 Oct; 419(6910):925-9. PubMed ID: 12410311
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Variation in copper sensitivity between laboratory and wild strains of Caenorhabditis elegans.
    Heaton A; Milligan E; Faulconer E; Allen A; Nguyen T; Weir SM; Glaberman S
    Chemosphere; 2022 Jan; 287(Pt 1):131883. PubMed ID: 34818820
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Metal-induced neurotoxicity in a RAGE-expressing C. elegans model.
    Lawes M; Pinkas A; Frohlich BA; Iroegbu JD; Ijomone OM; Aschner M
    Neurotoxicology; 2020 Sep; 80():71-75. PubMed ID: 32621835
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Lipidomic and Metallomic Alteration of
    Blume B; Schwantes V; Witting M; Hayen H; Schmitt-Kopplin P; Helmer PO; Michalke B
    J Proteome Res; 2023 Mar; 22(3):837-850. PubMed ID: 36594972
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism.
    Li L; Li Y; Zeng K; Wang Q
    Food Chem Toxicol; 2024 Apr; 186():114576. PubMed ID: 38458533
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans.
    Rogers S; Rice KM; Manne ND; Shokuhfar T; He K; Selvaraj V; Blough ER
    SAGE Open Med; 2015; 3():2050312115575387. PubMed ID: 26770770
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.
    Zhang Y; Chen D; Smith MA; Zhang B; Pan X
    PLoS One; 2012; 7(3):e31849. PubMed ID: 22438870
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The nanotoxicity assessment of cube-like iron nitride magnetic nanoparticles at the organismal level of nematode
    Gubert G; Gubert P; Sandes JM; Bornhorst J; Alves LC; Quines CB; Mosca DH
    Nanotoxicology; 2022 May; 16(4):472-483. PubMed ID: 35848961
    [TBL] [Abstract][Full Text] [Related]  

  • 93. FoxO signaling pathway stimulation by Bacillus smithii XY1 contributes to alleviating copper-induced neurotoxicity.
    Gao Y; Huang X; Zheng X; Yan F
    J Hazard Mater; 2024 Mar; 465():133345. PubMed ID: 38147755
    [TBL] [Abstract][Full Text] [Related]  

  • 94. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.
    Pluskota A; Horzowski E; Bossinger O; von Mikecz A
    PLoS One; 2009 Aug; 4(8):e6622. PubMed ID: 19672302
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Pitaya fruit extract ameliorates the healthspan on copper-induced toxicity of Caenorhabditis elegans.
    Tamagno WA; Santini W; Dos Santos A; Alves C; Bilibio D; Sutorillo NT; Zamberlan DC; Kaizer RR; Barcellos LJG
    J Food Biochem; 2022 Mar; 46(3):e14050. PubMed ID: 34981523
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor.
    Cedergreen N; Nørhave NJ; Svendsen C; Spurgeon DJ
    PLoS One; 2016; 11(1):e0140277. PubMed ID: 26784453
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Combinational exposure to hydroxyatrazine increases neurotoxicity of polystyrene nanoparticles on Caenorhabditis elegans.
    Wang Y; Yuan X; Zhou R; Bu Y; Wang D
    Sci Total Environ; 2023 Jul; 880():163283. PubMed ID: 37019222
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Size, polyglycerol grafting, and net surface charge of iron oxide nanoparticles determine their interaction and toxicity in Caenorhabditis elegans.
    Zou Y; Shikano Y; Nishina Y; Komatsu N; Kage-Nakadai E; Fujiwara M
    Chemosphere; 2024 Jun; 358():142060. PubMed ID: 38648981
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism
    Gonzalez-Moragas L; Maurer LL; Harms VM; Meyer JN; Laromaine A; Roig A
    Mater Horiz; 2017 Sep; 4(5):719-746. PubMed ID: 29057078
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Exploring the environmental factor fulvic acid attenuates the ecotoxicity of graphene oxide under food delivery exposure.
    Luo X; Zhang Y; Wang Y; Chen Q; Tu J; He M; Zhang J; Wu Y
    Ecotoxicol Environ Saf; 2024 Jan; 270():115893. PubMed ID: 38154154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.