BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 27912098)

  • 1. Characterization of Hippo Pathway Components by Gene Inactivation.
    Plouffe SW; Meng Z; Lin KC; Lin B; Hong AW; Chun JV; Guan KL
    Mol Cell; 2016 Dec; 64(5):993-1008. PubMed ID: 27912098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis.
    Moroishi T; Park HW; Qin B; Chen Q; Meng Z; Plouffe SW; Taniguchi K; Yu FX; Karin M; Pan D; Guan KL
    Genes Dev; 2015 Jun; 29(12):1271-84. PubMed ID: 26109050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway.
    Meng Z; Moroishi T; Mottier-Pavie V; Plouffe SW; Hansen CG; Hong AW; Park HW; Mo JS; Lu W; Lu S; Flores F; Yu FX; Halder G; Guan KL
    Nat Commun; 2015 Oct; 6():8357. PubMed ID: 26437443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Mediated Approaches to Regulate YAP/TAZ Levels.
    Quinton RJ; Ganem NJ
    Methods Mol Biol; 2019; 1893():203-214. PubMed ID: 30565136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid kinase PIP5Kα contributes to Hippo pathway activation via interaction with Merlin and by mediating plasma membrane targeting of LATS1.
    Le TPH; Nguyen NTT; Le DDT; Anwar MA; Lee SY
    Cell Commun Signal; 2023 Jun; 21(1):149. PubMed ID: 37337213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.
    Lin KC; Moroishi T; Meng Z; Jeong HS; Plouffe SW; Sekido Y; Han J; Park HW; Guan KL
    Nat Cell Biol; 2017 Jul; 19(8):996-1002. PubMed ID: 28752853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell.
    Plouffe SW; Lin KC; Moore JL; Tan FE; Ma S; Ye Z; Qiu Y; Ren B; Guan KL
    J Biol Chem; 2018 Jul; 293(28):11230-11240. PubMed ID: 29802201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs).
    Mo JS; Yu FX; Gong R; Brown JH; Guan KL
    Genes Dev; 2012 Oct; 26(19):2138-43. PubMed ID: 22972936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tumor suppressor NF2 modulates TEAD4 stability and activity in Hippo signaling via direct interaction.
    Wu M; Hu L; He L; Yuan L; Yang L; Zhao B; Zhang L; He X
    J Biol Chem; 2024 May; 300(5):107212. PubMed ID: 38522513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical roles of phosphoinositides and NF2 in Hippo pathway regulation.
    Hong AW; Meng Z; Plouffe SW; Lin Z; Zhang M; Guan KL
    Genes Dev; 2020 Apr; 34(7-8):511-525. PubMed ID: 32115406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD44 acts through RhoA to regulate YAP signaling.
    Zhang Y; Xia H; Ge X; Chen Q; Yuan D; Chen Q; Leng W; Chen L; Tang Q; Bi F
    Cell Signal; 2014 Nov; 26(11):2504-13. PubMed ID: 25101858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hippo pathway member Nf2 is required for inner cell mass specification.
    Cockburn K; Biechele S; Garner J; Rossant J
    Curr Biol; 2013 Jul; 23(13):1195-201. PubMed ID: 23791728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RHOA activity in expanding blastocysts is essential to regulate HIPPO-YAP signaling and to maintain the trophectoderm-specific gene expression program in a ROCK/actin filament-independent manner.
    Marikawa Y; Alarcon VB
    Mol Hum Reprod; 2019 Feb; 25(2):43-60. PubMed ID: 30395288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane protein KIRREL1 regulates Hippo signaling via a feedback loop and represents a therapeutic target in YAP/TAZ-active cancers.
    Gu Y; Wang Y; Sha Z; He C; Zhu Y; Li J; Yu A; Zhong Z; Wang X; Sun Y; Lan F; Yu FX
    Cell Rep; 2022 Aug; 40(9):111296. PubMed ID: 36044856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling.
    Yu FX; Zhao B; Panupinthu N; Jewell JL; Lian I; Wang LH; Zhao J; Yuan H; Tumaneng K; Li H; Fu XD; Mills GB; Guan KL
    Cell; 2012 Aug; 150(4):780-91. PubMed ID: 22863277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis.
    Azad T; Nouri K; Janse van Rensburg HJ; Maritan SM; Wu L; Hao Y; Montminy T; Yu J; Khanal P; Mulligan LM; Yang X
    Oncogene; 2020 Jan; 39(2):334-355. PubMed ID: 31477837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression.
    Rashidian J; Le Scolan E; Ji X; Zhu Q; Mulvihill MM; Nomura D; Luo K
    Sci Signal; 2015 Feb; 8(363):ra14. PubMed ID: 25670202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion.
    Nouri K; Azad T; Lightbody E; Khanal P; Nicol CJ; Yang X
    FASEB J; 2019 Nov; 33(11):12487-12499. PubMed ID: 31431076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingosylphosphorylcholine regulates the Hippo signaling pathway in a dual manner.
    Kemppainen K; Wentus N; Lassila T; Laiho A; Törnquist K
    Cell Signal; 2016 Dec; 28(12):1894-1903. PubMed ID: 27634386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells.
    Van Sciver N; Ohashi M; Pauly NP; Bristol JA; Nelson SE; Johannsen EC; Kenney SC
    PLoS Pathog; 2021 Aug; 17(8):e1009783. PubMed ID: 34339458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.