These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 27912179)
1. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance. Lin C; Zhigang F Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():195-202. PubMed ID: 27912179 [TBL] [Abstract][Full Text] [Related]
2. Two rhodamine derived chemosensors excited by up-conversion lattice for cysteine detection: Synthesis, characterization and sensing behavior. Pu W; Lisha W; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 159():223-30. PubMed ID: 26852112 [TBL] [Abstract][Full Text] [Related]
3. Characterization and cysteine sensing performance of nanocomposites based on up-conversion excitation host and rhodamine-derived probes. Yuqing Z; Yi X; Lihua L; Juanjuan M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():134-142. PubMed ID: 29028505 [TBL] [Abstract][Full Text] [Related]
4. An optical sensing composite for cysteine detection using up-conversion nanoparticles and a rhodamine-derived chemosensor: Construction, characterization, photophysical feature and sensing performance. Kai S; Cheng-Wen L; Yi-Nan D; Tian L; Guang-Ye W; Jing-Mei L; Li-Quan G Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():81-7. PubMed ID: 26580512 [TBL] [Abstract][Full Text] [Related]
5. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals. Song K; Mo J; Lu C Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():125-131. PubMed ID: 28237657 [TBL] [Abstract][Full Text] [Related]
6. Hg(II)-activated emission "turn-on" chemosensors excited by up-conversion nanocrystals: synthesis, characterization and sensing performance. Li S; Zhao X; Tao D; Zhang W; Zhang K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():581-8. PubMed ID: 25240830 [TBL] [Abstract][Full Text] [Related]
7. Up-Converting Nanocrystals Modified With Fluorescent Markers for the Detection of Amino Acids: Preparation, Characterization, and Sensing Performance. Fei Y; Wu K; Liu L Front Chem; 2022; 10():859963. PubMed ID: 35386845 [TBL] [Abstract][Full Text] [Related]
8. The synthesis and mercury-recognizing skill of two emission "turn-on" rhodamine derivatives excited by rare earth up-conversion lattice. Shen L; He Y; Yang X; Ma W Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():172-9. PubMed ID: 25064499 [TBL] [Abstract][Full Text] [Related]
9. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET. Piao J; Lv J; Zhou X; Zhao T; Wu X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():475-80. PubMed ID: 24682064 [TBL] [Abstract][Full Text] [Related]
10. Retraction notice to "Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance" [SAA 174 (2017) 195-202]. Lin C; Zhigang F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():798. PubMed ID: 30081439 [No Abstract] [Full Text] [Related]
11. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors. Mao H; Liu Z Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():366-373. PubMed ID: 28830040 [TBL] [Abstract][Full Text] [Related]
12. On two site-specific nitrite-sensing nanocomposites having a core-shell structure: Construction, characterization and sensing performance. Kadeerhazi M; Ali A; Bekhit AE Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():361-368. PubMed ID: 27569768 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and Hg(II)-sensing behavior of an up-conversion nanocomposite grafted by a rhodamine derived probe: a potential application for eco-industrial park. Dong-sheng Z; Da-shun Z; Hai-yan S; Zhang K Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():1062-7. PubMed ID: 24161869 [TBL] [Abstract][Full Text] [Related]
14. Towards recyclable optical nitrite sensing composite structures: Design, synthesis, characterization and sensing performance. Peng X; Wei X; Chen T Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():950-959. PubMed ID: 27837738 [TBL] [Abstract][Full Text] [Related]
15. Turn-On Fluorescent Sensors for the Selective Detection of Al Kumar V; Kumar P; Kumar S; Singhal D; Gupta R Inorg Chem; 2019 Aug; 58(15):10364-10376. PubMed ID: 31342750 [TBL] [Abstract][Full Text] [Related]
16. A composite nanosensing array with two response channels for trinitrobenzoic acid optical test. Li B; Sun W; Wu Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118449. PubMed ID: 32416444 [TBL] [Abstract][Full Text] [Related]
17. Near-infrared light triggered superior photocatalytic activity from MoS2-NaYF4:Yb(3+)/Er(3+) nanocomposites. Chatti M; Adusumalli VN; Ganguli S; Mahalingam V Dalton Trans; 2016 Aug; 45(31):12384-92. PubMed ID: 27424735 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the upconversion luminescence and photothermal conversion properties of ∼800nm excitable core/shell nanoparticles by dye molecule sensitization. Shao Q; Li X; Hua P; Zhang G; Dong Y; Jiang J J Colloid Interface Sci; 2017 Jan; 486():121-127. PubMed ID: 27697649 [TBL] [Abstract][Full Text] [Related]
19. The salen based chemosensors for highly selective recognition of Zn Zhu W; Du L; Li W; Zuo J; Shan J Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():501-509. PubMed ID: 29902756 [TBL] [Abstract][Full Text] [Related]
20. On the combination of luminescent rare earth MOF and rhodamine dopant with two sensing channels for picric acid. Fan Y; Cheng X; Xue G; Wu J; Huang Z Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():210-217. PubMed ID: 30690304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]