These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27912743)

  • 21. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements.
    Parson W; Ballard D; Budowle B; Butler JM; Gettings KB; Gill P; Gusmão L; Hares DR; Irwin JA; King JL; Knijff P; Morling N; Prinz M; Schneider PM; Neste CV; Willuweit S; Phillips C
    Forensic Sci Int Genet; 2016 May; 22():54-63. PubMed ID: 26844919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sensitive repeat identification framework based on short and long reads.
    Liao X; Li M; Hu K; Wu FX; Gao X; Wang J
    Nucleic Acids Res; 2021 Sep; 49(17):e100. PubMed ID: 34214175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA.
    Homer N; Nelson SF
    Genome Biol; 2010; 11(10):R99. PubMed ID: 20932289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UNDR ROVER - a fast and accurate variant caller for targeted DNA sequencing.
    Park DJ; Li R; Lau E; Georgeson P; Nguyen-Dumont T; Pope BJ
    BMC Bioinformatics; 2016 Apr; 17():165. PubMed ID: 27083325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. lamassemble: Multiple Alignment and Consensus Sequence of Long Reads.
    Frith MC; Mitsuhashi S; Katoh K
    Methods Mol Biol; 2021; 2231():135-145. PubMed ID: 33289891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and accurate short read alignment with Burrows-Wheeler transform.
    Li H; Durbin R
    Bioinformatics; 2009 Jul; 25(14):1754-60. PubMed ID: 19451168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequencing technologies and tools for short tandem repeat variation detection.
    Cao MD; Balasubramanian S; Bodén M
    Brief Bioinform; 2015 Mar; 16(2):193-204. PubMed ID: 24504770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics.
    Thankaswamy-Kosalai S; Sen P; Nookaew I
    Genomics; 2017 Jul; 109(3-4):186-191. PubMed ID: 28286147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform.
    Fordyce SL; Ávila-Arcos MC; Rockenbauer E; Børsting C; Frank-Hansen R; Petersen FT; Willerslev E; Hansen AJ; Morling N; Gilbert MT
    Biotechniques; 2011 Aug; 51(2):127-33. PubMed ID: 21806557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data.
    Chiara M; Zambelli F; Picardi E; Horner DS; Pesole G
    Brief Bioinform; 2020 Dec; 21(6):1971-1986. PubMed ID: 31792498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Re-alignment of the unmapped reads with base quality score.
    Peng X; Wang J; Zhang Z; Xiao Q; Li M; Pan Y
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S8. PubMed ID: 25860434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CUSHAW3: sensitive and accurate base-space and color-space short-read alignment with hybrid seeding.
    Liu Y; Popp B; Schmidt B
    PLoS One; 2014; 9(1):e86869. PubMed ID: 24466273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MICA: A fast short-read aligner that takes full advantage of Many Integrated Core Architecture (MIC).
    Luo R; Cheung J; Wu E; Wang H; Chan SH; Law WC; He G; Yu C; Liu CM; Zhou D; Li Y; Li R; Wang J; Zhu X; Peng S; Lam TW
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 25952019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads.
    Mitsuhashi S; Frith MC; Mizuguchi T; Miyatake S; Toyota T; Adachi H; Oma Y; Kino Y; Mitsuhashi H; Matsumoto N
    Genome Biol; 2019 Mar; 20(1):58. PubMed ID: 30890163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance evaluation method for read mapping tool in clinical panel sequencing.
    Lee H; Lee KW; Lee T; Park D; Chung J; Lee C; Park WY; Son DS
    Genes Genomics; 2018; 40(2):189-197. PubMed ID: 29568413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Verification and validation of bioinformatics software without a gold standard: a case study of BWA and Bowtie.
    Giannoulatou E; Park SH; Humphreys DT; Ho JW
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S15. PubMed ID: 25521810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RF: a method for filtering short reads with tandem repeats for genome mapping.
    Misawa K
    Genomics; 2013 Jul; 102(1):35-7. PubMed ID: 23542167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.