BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27913168)

  • 1. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.
    Zhou PP; Meng J; Bao J
    Bioresour Technol; 2017 Jan; 224():563-572. PubMed ID: 27913168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.
    Zhang H; Zhang J; Bao J
    Bioresour Technol; 2016 Mar; 203():211-9. PubMed ID: 26724553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.
    Zhang H; Liu G; Zhang J; Bao J
    Bioresour Technol; 2016 Nov; 219():123-131. PubMed ID: 27484668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.
    Zhang H; Han X; Wei C; Bao J
    Bioresour Technol; 2017 Jan; 224():573-580. PubMed ID: 27955866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production.
    Liu G; Zhang Q; Li H; Qureshi AS; Zhang J; Bao X; Bao J
    Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.
    Liu G; Sun J; Zhang J; Tu Y; Bao J
    Bioresour Technol; 2015 Dec; 198():803-10. PubMed ID: 26454367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation.
    Xie G; West TP
    Lett Appl Microbiol; 2009 May; 48(5):639-44. PubMed ID: 19416466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger.
    Hou W; Bao J
    Bioresour Technol; 2018 Apr; 253():72-78. PubMed ID: 29331516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.
    Zhang J; Shao S; Bao J
    Bioresour Technol; 2016 Feb; 201():355-9. PubMed ID: 26639616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid production by Aspergillus niger on wet corn distillers grains.
    Xie G; West TP
    Lett Appl Microbiol; 2006 Sep; 43(3):269-73. PubMed ID: 16910930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-examination of dilute acid hydrolysis of lignocellulose for production of cellulosic ethanol after de-bottlenecking the inhibitor barrier.
    Zhang B; Wu L; Wang Y; Li J; Zhan B; Bao J
    J Biotechnol; 2022 Jul; 353():36-43. PubMed ID: 35597330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.
    Qureshi AS; Zhang J; Bao J
    Bioresour Technol; 2015; 189():399-404. PubMed ID: 25930238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving cellulosic ethanol fermentation efficiency by converting endogenous water-soluble carbohydrates into citric acid before pretreatment.
    Dong W; Han X; Liu G; Bao J
    Bioprocess Biosyst Eng; 2019 Jul; 42(7):1099-1103. PubMed ID: 30911817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger.
    Hu W; Li W; Chen H; Liu J; Wang S; Chen J
    PLoS One; 2017; 12(6):e0180120. PubMed ID: 28650980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of citric acid from starch-hydrolysate by Aspergillus niger.
    Mourya S; Jauhri KS
    Microbiol Res; 2000 Apr; 155(1):37-44. PubMed ID: 10830898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation.
    Chen Z; Liu G; Zhang J; Bao J
    Bioresour Technol; 2019 Jan; 271():196-201. PubMed ID: 30268811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of citric acid using immobilized conidia of Aspergillus niger.
    Bayraktar E; Mehmetoglu U
    Appl Biochem Biotechnol; 2000 May; 87(2):117-25. PubMed ID: 10949692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger.
    Papadaki E; Mantzouridou FT
    Bioresour Technol; 2019 May; 280():59-69. PubMed ID: 30754006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodetoxification of Phenolic Inhibitors from Lignocellulose Pretreatment using
    Xie Y; Hu Q; Feng G; Jiang X; Hu J; He M; Hu G; Zhao S; Liang Y; Ruan Z; Peng N
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitation of l-Lactic Acid Fermentation by Lignocellulose Biomass Rich in Vitamin B Compounds.
    Han X; Li L; Wei C; Zhang J; Bao J
    J Agric Food Chem; 2019 Jun; 67(25):7082-7086. PubMed ID: 31199642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.