These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27913217)

  • 1. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation.
    Leis D; Lauß B; Macher-Ambrosch R; Pfennig A; Nidetzky B; Kratzer R
    J Biotechnol; 2017 Sep; 257():110-117. PubMed ID: 27913217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.
    Schmölzer K; Mädje K; Nidetzky B; Kratzer R
    Bioresour Technol; 2012 Mar; 108(C):216-23. PubMed ID: 22281147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: stereoselectivity, cell activity, in situ substrate supply and product removal.
    Gruber C; Krahulec S; Nidetzky B; Kratzer R
    Biotechnol J; 2013 Jun; 8(6):699-708. PubMed ID: 23589466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-up and intensification of (S)-1-(2-chlorophenyl)ethanol bioproduction: economic evaluation of whole cell-catalyzed reduction of o-chloroacetophenone.
    Eixelsberger T; Woodley JM; Nidetzky B; Kratzer R
    Biotechnol Bioeng; 2013 Aug; 110(8):2311-5. PubMed ID: 23475609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational selection of biphasic reaction systems for geranyl glucoside production by Escherichia coli whole-cell biocatalysts.
    Priebe X; Daschner M; Schwab W; Weuster-Botz D
    Enzyme Microb Technol; 2018 May; 112():79-87. PubMed ID: 29499785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable-Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis.
    Großeheilmann J; Vanderveen JR; Jessop PG; Kragl U
    ChemSusChem; 2016 Apr; 9(7):696-702. PubMed ID: 26893152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations.
    Collins J; Grund M; Brandenbusch C; Sadowski G; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1011-26. PubMed ID: 25916765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New reactive extraction systems for separation of bio-succinic acid.
    Kurzrock T; Weuster-Botz D
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):779-87. PubMed ID: 21350956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient whole-cell biotransformation in a biphasic ionic liquid/water system.
    Pfruender H; Amidjojo M; Kragl U; Weuster-Botz D
    Angew Chem Int Ed Engl; 2004 Aug; 43(34):4529-31. PubMed ID: 15340962
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of an organic-solvent-tolerant Brevibacillus agri strain 13 able to stabilize solvent/water emulsion.
    Kongpol A; Pongtharangkul T; Kato J; Honda K; Ohtake H; Vangnai AS
    FEMS Microbiol Lett; 2009 Aug; 297(2):225-33. PubMed ID: 19548892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the limits: Cyclodextrin-based intensification of bioreductions.
    Rapp C; Nidetzky B; Kratzer R
    J Biotechnol; 2021 Jan; 325():57-64. PubMed ID: 33220340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis.
    Glonke S; Sadowski G; Brandenbusch C
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1527-1535. PubMed ID: 27650629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme identification and development of a whole-cell biotransformation for asymmetric reduction of o-chloroacetophenone.
    Kratzer R; Pukl M; Egger S; Vogl M; Brecker L; Nidetzky B
    Biotechnol Bioeng; 2011 Apr; 108(4):797-803. PubMed ID: 21404254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions.
    Kratzer R; Woodley JM; Nidetzky B
    Biotechnol Adv; 2015 Dec; 33(8):1641-52. PubMed ID: 26343336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.
    Brandenbusch C; Glonke S; Collins J; Hoffrogge R; Grunwald K; Bühler B; Schmid A; Sadowski G
    Biotechnol Bioeng; 2015 Nov; 112(11):2316-23. PubMed ID: 26012371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric reduction of o-chloroacetophenone with Candida pseudotropicalis 104.
    Xie Q; Wu J; Xu G; Yang L
    Biotechnol Prog; 2006; 22(5):1301-4. PubMed ID: 17022667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous phase separation of stable emulsions from biphasic whole-cell biocatalysis by catastrophic phase inversion.
    Janssen L; Sadowski G; Brandenbusch C
    Biotechnol J; 2023 Jun; 18(6):e2200489. PubMed ID: 36972523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water immiscible ionic liquids as solvents for whole cell biocatalysis.
    Pfruender H; Jones R; Weuster-Botz D
    J Biotechnol; 2006 Jun; 124(1):182-90. PubMed ID: 16413078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of various methods to predict bacterial predilection for organic solvents used as reaction media.
    Hamada T; Sameshima Y; Honda K; Omasa T; Kato J; Ohtake H
    J Biosci Bioeng; 2008 Oct; 106(4):357-62. PubMed ID: 19000611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent toxicity in organic-aqueous systems analysed by multivariate analysis.
    de Carvalho CC; da Fonseca MM
    Bioprocess Biosyst Eng; 2004 Dec; 26(6):361-75. PubMed ID: 15378340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.