BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 27913218)

  • 41. Characterization and application of a putative transcription factor (SUT2) in Pichia pastoris.
    Yang Y; Zheng Y; Wang P; Li X; Zhan C; Linhardt RJ; Zhang F; Liu X; Zhan J; Bai Z
    Mol Genet Genomics; 2020 Sep; 295(5):1295-1304. PubMed ID: 32566991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans.
    Nielsen ML; Nielsen JB; Rank C; Klejnstrup ML; Holm DK; Brogaard KH; Hansen BG; Frisvad JC; Larsen TO; Mortensen UH
    FEMS Microbiol Lett; 2011 Aug; 321(2):157-66. PubMed ID: 21658102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The ctnF gene is involved in citrinin and pigment synthesis in Monascus aurantiacus.
    Li Y; Wang N; Jiao X; Tu Z; He Q; Fu J
    J Basic Microbiol; 2020 Oct; 60(10):873-881. PubMed ID: 32812258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of major ADH genes in ethanol metabolism of Pichia pastoris.
    Karaoğlan M; Erden-Karaoğlan F; Yılmaz S; İnan M
    Yeast; 2020 Feb; 37(2):227-236. PubMed ID: 31603243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigating Fungal Biosynthetic Pathways Using Pichia pastoris as a Heterologous Host.
    Qian Z; Liu Q; Cai M
    Methods Mol Biol; 2022; 2489():115-127. PubMed ID: 35524048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei.
    Woo PC; Lam CW; Tam EW; Lee KC; Yung KK; Leung CK; Sze KH; Lau SK; Yuen KY
    Sci Rep; 2014 Oct; 4():6728. PubMed ID: 25335861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A New Protein Factor in the Product Formation of Non-Reducing Fungal Polyketide Synthase with a C-Terminus Reductive Domain.
    Balakrishnan B; Chandran R; Park SH; Kwon HJ
    J Microbiol Biotechnol; 2015 Oct; 25(10):1648-52. PubMed ID: 26095387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of a Polyketide Synthase Gene Responsible for Ascochitine Biosynthesis in
    Kim W; Lichtenzveig J; Syme RA; Williams AH; Peever TL; Chen W
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31554725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trm1p, a Zn(II)₂Cys₆-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris.
    Sahu U; Krishna Rao K; Rangarajan PN
    Biochem Biophys Res Commun; 2014 Aug; 451(1):158-64. PubMed ID: 25088995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning and expression of hemicellulases from Aspergillus nidulans in Pichia pastoris.
    Vasu P; Bauer S; Savary BJ
    Methods Mol Biol; 2012; 824():393-416. PubMed ID: 22160911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modular construction of a functional artificial epothilone polyketide pathway.
    Osswald C; Zipf G; Schmidt G; Maier J; Bernauer HS; Müller R; Wenzel SC
    ACS Synth Biol; 2014 Oct; 3(10):759-72. PubMed ID: 23654254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1.
    Sun X; Liu H; Wang P; Wang L; Ni W; Yang Q; Wang H; Tang H; Zhao G; Zheng Z
    Microb Cell Fact; 2019 Oct; 18(1):169. PubMed ID: 31601211
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomic insight into the effect of ethanol on citrinin biosynthesis pathway in Monascus purpureus NTU 568.
    Tan YY; Hsu WH; Shih TW; Lin CH; Pan TM
    Food Res Int; 2014 Oct; 64():733-742. PubMed ID: 30011710
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals Inhibition Mechanism of Pigments and Citrinin Production of
    Zhou B; Ma Y; Tian Y; Li J; Zhong H
    J Agric Food Chem; 2020 Jan; 68(3):808-817. PubMed ID: 31870144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris.
    Lin Cereghino GP; Lin Cereghino J; Sunga AJ; Johnson MA; Lim M; Gleeson MA; Cregg JM
    Gene; 2001 Jan; 263(1-2):159-69. PubMed ID: 11223254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi.
    Bertrand RL; Sorensen JL
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1067-1081. PubMed ID: 30206732
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight.
    Jeong E; Shim WY; Kim JH
    J Biotechnol; 2014 Sep; 185():28-36. PubMed ID: 24892811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source.
    Schotte P; Dewerte I; De Groeve M; De Keyser S; De Brabandere V; Stanssens P
    Microb Cell Fact; 2016 Jun; 15():98. PubMed ID: 27267127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris.
    Vogl T; Sturmberger L; Kickenweiz T; Wasmayer R; Schmid C; Hatzl AM; Gerstmann MA; Pitzer J; Wagner M; Thallinger GG; Geier M; Glieder A
    ACS Synth Biol; 2016 Feb; 5(2):172-86. PubMed ID: 26592304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.