BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27913297)

  • 1. Phospholipase Cγ1 suppresses foreign body giant cell formation by maintaining RUNX1 expression in macrophages.
    Kim YS; Ok CY; Park JS; Lee HY; Bae YS
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1025-1029. PubMed ID: 27913297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms.
    Yagi M; Ninomiya K; Fujita N; Suzuki T; Iwasaki R; Morita K; Hosogane N; Matsuo K; Toyama Y; Suda T; Miyamoto T
    J Bone Miner Res; 2007 Jul; 22(7):992-1001. PubMed ID: 17402846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation.
    Kyriakides TR; Foster MJ; Keeney GE; Tsai A; Giachelli CM; Clark-Lewis I; Rollins BJ; Bornstein P
    Am J Pathol; 2004 Dec; 165(6):2157-66. PubMed ID: 15579457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells.
    Miyamoto H; Suzuki T; Miyauchi Y; Iwasaki R; Kobayashi T; Sato Y; Miyamoto K; Hoshi H; Hashimoto K; Yoshida S; Hao W; Mori T; Kanagawa H; Katsuyama E; Fujie A; Morioka H; Matsumoto M; Chiba K; Takeya M; Toyama Y; Miyamoto T
    J Bone Miner Res; 2012 Jun; 27(6):1289-97. PubMed ID: 22337159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foreign body-type multinucleated giant cells induced by interleukin-4 express select lymphocyte co-stimulatory molecules and are phenotypically distinct from osteoclasts and dendritic cells.
    McNally AK; Anderson JM
    Exp Mol Pathol; 2011 Dec; 91(3):673-81. PubMed ID: 21798256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion.
    Miyamoto H; Katsuyama E; Miyauchi Y; Hoshi H; Miyamoto K; Sato Y; Kobayashi T; Iwasaki R; Yoshida S; Mori T; Kanagawa H; Fujie A; Hao W; Morioka H; Matsumoto M; Toyama Y; Miyamoto T
    J Biol Chem; 2012 Sep; 287(39):32479-84. PubMed ID: 22865856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties.
    McNally AK; Anderson JM
    J Biomed Mater Res A; 2015 Apr; 103(4):1380-90. PubMed ID: 25045023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation.
    Arya RK; Goswami R; Rahaman SO
    J Biol Chem; 2021; 296():100129. PubMed ID: 33262217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runx1 regulation of Pu.1 corepressor/coactivator exchange identifies specific molecular targets for leukemia differentiation therapy.
    Gu X; Hu Z; Ebrahem Q; Crabb JS; Mahfouz RZ; Radivoyevitch T; Crabb JW; Saunthararajah Y
    J Biol Chem; 2014 May; 289(21):14881-95. PubMed ID: 24695740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells.
    Jones JA; Chang DT; Meyerson H; Colton E; Kwon IK; Matsuda T; Anderson JM
    J Biomed Mater Res A; 2007 Dec; 83(3):585-96. PubMed ID: 17503526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation.
    Willcockson MA; Taylor SJ; Ghosh S; Healton SE; Wheat JC; Wilson TJ; Steidl U; Skoultchi AI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17841-17847. PubMed ID: 31431533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage fusion leading to foreign body giant cell formation persists under phagocytic stimulation by microspheres in vitro and in vivo in mouse models.
    Jay SM; Skokos EA; Zeng J; Knox K; Kyriakides TR
    J Biomed Mater Res A; 2010 Apr; 93(1):189-99. PubMed ID: 19536825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foreign body-type multinucleated giant cell formation requires protein kinase C beta, delta, and zeta.
    McNally AK; Macewan SR; Anderson JM
    Exp Mol Pathol; 2008 Feb; 84(1):37-45. PubMed ID: 18067888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha subunit partners to beta1 and beta2 integrins during IL-4-induced foreign body giant cell formation.
    McNally AK; Macewan SR; Anderson JM
    J Biomed Mater Res A; 2007 Sep; 82(3):568-74. PubMed ID: 17311314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo quantitative and qualitative assessment of foreign body giant cell formation on biomaterials in mice deficient in natural killer lymphocyte subsets, mast cells, or the interleukin-4 receptorα and in severe combined immunodeficient mice.
    Yang J; Jao B; McNally AK; Anderson JM
    J Biomed Mater Res A; 2014 Jun; 102(6):2017-23. PubMed ID: 24616384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle delivery of miR-223 to attenuate macrophage fusion.
    Moore LB; Sawyer AJ; Saucier-Sawyer J; Saltzman WM; Kyriakides TR
    Biomaterials; 2016 May; 89():127-35. PubMed ID: 26967647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation.
    McNally AK; Anderson JM
    Am J Pathol; 2002 Feb; 160(2):621-30. PubMed ID: 11839583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polytetrafluoroethylene topographies determine the adhesion, activation, and foreign body giant cell formation of macrophages.
    Lamichhane S; Anderson JA; Vierhout T; Remund T; Sun H; Kelly P
    J Biomed Mater Res A; 2017 Sep; 105(9):2441-2450. PubMed ID: 28466979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite.
    Herde K; Hartmann S; Brehm R; Kilian O; Heiss C; Hild A; Alt V; Bergmann M; Schnettler R; Wenisch S
    Biomaterials; 2007 Nov; 28(33):4912-21. PubMed ID: 17719629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions.
    Oya A; Katsuyama E; Morita M; Sato Y; Kobayashi T; Miyamoto K; Nishiwaki T; Funayama A; Fujita Y; Kobayashi T; Matsumoto M; Nakamura M; Kanaji A; Miyamoto T
    J Bone Miner Metab; 2018 Nov; 36(6):679-690. PubMed ID: 29273889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.