These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27913333)

  • 1. Super-Cell Piezoelectric Composite With 1-3 Connectivity.
    Rouffaud R; Levassort F; Pham Thi M; Bantignies C; Lethiecq M; Hladky-Hennion AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2215-2223. PubMed ID: 27913333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined genetic algorithm and finite element method for the determination of a practical elasto-electric set for 1-3 piezocomposite phases.
    Rouffaud R; Hladky-Hennion AC; Levassort F
    Ultrasonics; 2017 May; 77():214-223. PubMed ID: 28254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.
    Li L; Qin L; Wang LK; Wan YY; Sun BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):946-51. PubMed ID: 18519193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers.
    Liu R; Harasiewicz KA; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):299-306. PubMed ID: 11367799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting passive and active materials for 1.3 composite power transducers.
    Richard C; Goujon L; Guyomar D; Lee HS; Grange G
    Ultrasonics; 2002 May; 40(1-8):895-901. PubMed ID: 12160066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the relationship between the inter-rod coupling and the efficiency of piezocomposite high-intensity focused ultrasound transducers.
    Chen GS; Pan CC; Lin YL; Cheng JS
    Ultrasonics; 2014 Mar; 54(3):789-94. PubMed ID: 24269167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of high frequency piezocomposite with hexagonal pillars via cold ablation process.
    Li Z; Lv J; Zhu X; Cui Y; Jian X
    Ultrasonics; 2021 Jul; 114():106404. PubMed ID: 33714767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband and high sensitive time-of-flight diffraction ultrasonic transducers based on PMNT/epoxy 1-3 piezoelectric composite.
    Liu D; Yue Q; Deng J; Lin D; Li X; Di W; Wang X; Zhao X; Luo H
    Sensors (Basel); 2015 Mar; 15(3):6807-17. PubMed ID: 25808776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of highly loaded 0-3 piezoelectric composites using a matrix method.
    Levassort F; Lethiecq M; Millar C; Pourcelot L
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1497-505. PubMed ID: 18249997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermo-mechanical stress effect on 1-3 piezocomposite power transducer performance.
    Richard C; Lee HS; Guyomar D
    Ultrasonics; 2004 Apr; 42(1-9):417-24. PubMed ID: 15047322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation.
    Banks R; O'Leary RL; Hayward G
    Ultrasonics; 2017 Mar; 75():132-144. PubMed ID: 27951502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale 1-3-Type (Na,K)NbO(3)-Based Pb-Free Piezocomposites for High-Frequency Ultrasonic Transducer Applications.
    Shen ZY; Li JF; Chen R; Zhou Q; Shung KK
    J Am Ceram Soc; 2011 May; 94(5):1346-1349. PubMed ID: 21637726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 40-MHz Ultrasonic Transducers via Soft Mold Process.
    Gunther PA; Neumeister P; Neubert H; Gebhardt S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1497-1503. PubMed ID: 31217102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of ultrafine piezoelectric composites.
    Yin J; Lukacs M; Harasiewicz KA; Foster FS
    Ultrason Imaging; 2005 Jan; 27(1):54-64. PubMed ID: 16003926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective electroelastic moduli of 3-3(0-3) piezocomposites.
    Levassort F; Lethiecq M; Desmare R; Hue TH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1028-34. PubMed ID: 18238508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations.
    Wilm M; Khelif A; Laude V; Ballandras S
    J Acoust Soc Am; 2007 Aug; 122(2):786-93. PubMed ID: 17672629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.