These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27913354)

  • 1. A Novel Elastic Force-Field to Influence Mediolateral Foot Placement During Walking.
    Nyberg ET; Broadway J; Finetto C; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1481-1488. PubMed ID: 27913354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
    Kang J; Vashista V; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a Novel Force-Field to Manipulate the Relationship Between Pelvis Motion and Step Width in Human Walking.
    Heitkamp LN; Stimpson KH; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2051-2058. PubMed ID: 31545734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the centre of pressure during walking and running using an instrumented treadmill.
    Verkerke GJ; Hof AL; Zijlstra W; Ament W; Rakhorst G
    J Biomech; 2005 Sep; 38(9):1881-5. PubMed ID: 16023476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral temporal control determines mediolateral margins of stability in symmetric and asymmetric human walking.
    Buurke TJW; Lamoth CJC; van der Woude LHV; Hof AL; den Otter R
    Sci Rep; 2019 Aug; 9(1):12494. PubMed ID: 31467362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive control of dynamic balance in human gait on a split-belt treadmill.
    Buurke TJW; Lamoth CJC; Vervoort D; van der Woude LHV; den Otter R
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29773683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechatronic body weight support system.
    Frey M; Colombo G; Vaglio M; Bucher R; Jörg M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):311-21. PubMed ID: 17009491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-stroke deficits in mediolateral foot placement accuracy depend on the prescribed walking task.
    Stimpson KH; Embry AE; Dean JC
    J Biomech; 2021 Nov; 128():110738. PubMed ID: 34509909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic walking analysis on a new vehicle "Tread-Walk" with active velocity control of treadmill belt.
    Ando T; Nihei M; Ohki E; Nakashima Y; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5977-80. PubMed ID: 19963662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.
    Zissimopoulos A; Fatone S; Gard S
    Prosthet Orthot Int; 2015 Oct; 39(5):372-9. PubMed ID: 24878846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force adaptation in human walking with symmetrically applied downward forces on the pelvis.
    Vashista V; Agrawal N; Shaharudin S; Reisman DS; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):969-78. PubMed ID: 23529103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of forward-directed aiding force on gait mechanics in healthy young adults while walking faster.
    Dionisio VC; Hurt CP; Brown DA
    Gait Posture; 2018 Jul; 64():12-17. PubMed ID: 29803081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower-limb amputee recovery response to an imposed error in mediolateral foot placement.
    Segal AD; Klute GK
    J Biomech; 2014 Sep; 47(12):2911-8. PubMed ID: 25145315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking.
    Noël M; Cantin B; Lambert S; Gosselin CM; Bouyer LJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):390-9. PubMed ID: 18701385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.