BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27913358)

  • 21. In search of the protein native state with a probabilistic sampling approach.
    Olson B; Molloy K; Shehu A
    J Bioinform Comput Biol; 2011 Jun; 9(3):383-98. PubMed ID: 21714131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-native structure refinement using in vacuo energy minimization.
    Summa CM; Levitt M
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3177-82. PubMed ID: 17360625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chaintweak: sampling from the neighbourhood of a protein conformation.
    Singh R; Bergert B
    Pac Symp Biocomput; 2005; ():52-63. PubMed ID: 15759613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computing energy landscape maps and structural excursions of proteins.
    Sapin E; Carr DB; De Jong KA; Shehu A
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):546. PubMed ID: 27535545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational ensembles and sampled energy landscapes: Analysis and comparison.
    Cazals F; Dreyfus T; Mazauric D; Roth CA; Robert CH
    J Comput Chem; 2015 Jun; 36(16):1213-31. PubMed ID: 25994596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational Space Sampling Method Using Multi-Subpopulation Differential Evolution for De novo Protein Structure Prediction.
    Hao XH; Zhang GJ; Zhou XG
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):618-633. PubMed ID: 28885157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modelling of protein interactions: energy minimization for the refinement and scoring of association decoys.
    Dibrov A; Myal Y; Leygue E
    Acta Biotheor; 2009 Dec; 57(4):419-28. PubMed ID: 19774465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
    Molloy K; Saleh S; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1162-75. PubMed ID: 24384705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental accuracy in protein structure refinement via molecular dynamics simulations.
    Heo L; Feig M
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13276-13281. PubMed ID: 30530696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detecting intermediate protein conformations using algebraic topology.
    Haspel N; Luo D; González E
    BMC Bioinformatics; 2017 Dec; 18(Suppl 15):502. PubMed ID: 29244007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.
    Roth CA; Dreyfus T; Robert CH; Cazals F
    J Comput Chem; 2016 Mar; 37(8):739-52. PubMed ID: 26714673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Molecular Simulations of Protein Systems toward Drug Discovery].
    Sakae Y; Nishikawa N; Tsukamoto S; Suzuki T; Okamoto Y
    Yakugaku Zasshi; 2016; 136(1):113-20. PubMed ID: 26725678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining minimum energy conformations of polypeptides by dynamic programming.
    Vajda S; Delisi C
    Biopolymers; 1990 Dec; 29(14):1755-72. PubMed ID: 2207285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An approach to the multiple-minima problem in protein folding by relaxing dimensionality. Tests on enkephalin.
    Purisima EO; Scheraga HA
    J Mol Biol; 1987 Aug; 196(3):697-709. PubMed ID: 3681972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced conformational sampling method for proteins based on the TaBoo SeArch algorithm: application to the folding of a mini-protein, chignolin.
    Harada R; Takano Y; Shigeta Y
    J Comput Chem; 2015 Apr; 36(10):763-72. PubMed ID: 25691321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.