BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 27913669)

  • 1. The unconventional G-protein cycle of LRRK2 and Roco proteins.
    Terheyden S; Nederveen-Schippers LM; Kortholt A
    Biochem Soc Trans; 2016 Dec; 44(6):1611-1616. PubMed ID: 27913669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Roco G-protein cycle.
    Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A
    Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties.
    Mills RD; Liang LY; Lio DS; Mok YF; Mulhern TD; Cao G; Griffin M; Kenche VB; Culvenor JG; Cheng HC
    J Neurochem; 2018 Nov; 147(3):409-428. PubMed ID: 30091236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and kinetic properties of the complex Roco G-protein cycle.
    Wauters L; Terheyden S; Gilsbach BK; Leemans M; Athanasopoulos PS; Guaitoli G; Wittinghofer A; Gloeckner CJ; Versées W; Kortholt A
    Biol Chem; 2018 Nov; 399(12):1447-1456. PubMed ID: 30067506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.
    Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity.
    Nguyen AP; Moore DJ
    Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover.
    Deyaert E; Wauters L; Guaitoli G; Konijnenberg A; Leemans M; Terheyden S; Petrovic A; Gallardo R; Nederveen-Schippers LM; Athanasopoulos PS; Pots H; Van Haastert PJM; Sobott F; Gloeckner CJ; Efremov R; Kortholt A; Versées W
    Nat Commun; 2017 Oct; 8(1):1008. PubMed ID: 29044096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roco Proteins: GTPases with a Baroque Structure and Mechanism.
    Wauters L; Versées W; Kortholt A
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roco Proteins and the Parkinson's Disease-Associated LRRK2.
    Liao J; Hoang QQ
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein.
    Guaitoli G; Gilsbach BK; Raimondi F; Gloeckner CJ
    Biochem Soc Trans; 2016 Dec; 44(6):1635-1641. PubMed ID: 27913672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The R1441C mutation of LRRK2 disrupts GTP hydrolysis.
    Lewis PA; Greggio E; Beilina A; Jain S; Baker A; Cookson MR
    Biochem Biophys Res Commun; 2007 Jun; 357(3):668-71. PubMed ID: 17442267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2.
    Blanca Ramírez M; Lara Ordóñez AJ; Fdez E; Madero-Pérez J; Gonnelli A; Drouyer M; Chartier-Harlin MC; Taymans JM; Bubacco L; Greggio E; Hilfiker S
    Hum Mol Genet; 2017 Jul; 26(14):2747-2767. PubMed ID: 28453723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of GTPase activity to LRRK2-associated Parkinson disease.
    Tsika E; Moore DJ
    Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation.
    Gilsbach BK; Kortholt A
    Front Mol Neurosci; 2014; 7():32. PubMed ID: 24847205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics.
    Wu CX; Liao J; Park Y; Reed X; Engel VA; Hoang NC; Takagi Y; Johnson SM; Wang M; Federici M; Nichols RJ; Sanishvili R; Cookson MR; Hoang QQ
    J Biol Chem; 2019 Apr; 294(15):5907-5913. PubMed ID: 30796162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Parkinson disease gene LRRK2: evolutionary and structural insights.
    Marín I
    Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2.
    Biosa A; Trancikova A; Civiero L; Glauser L; Bubacco L; Greggio E; Moore DJ
    Hum Mol Genet; 2013 Mar; 22(6):1140-56. PubMed ID: 23241358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Parkinson's disease-associated mutation N1437H impairs conformational dynamics in the G domain of LRRK2.
    Huang X; Wu C; Park Y; Long X; Hoang QQ; Liao J
    FASEB J; 2019 Apr; 33(4):4814-4823. PubMed ID: 30592623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease.
    Ito G; Okai T; Fujino G; Takeda K; Ichijo H; Katada T; Iwatsubo T
    Biochemistry; 2007 Feb; 46(5):1380-8. PubMed ID: 17260967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.