These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 27914034)
1. Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque. Hasanally D; Edel A; Chaudhary R; Ravandi A Lipids; 2017 Jan; 52(1):11-26. PubMed ID: 27914034 [TBL] [Abstract][Full Text] [Related]
2. Identification and visualization of oxidized lipids in atherosclerotic plaques by microscopic imaging mass spectrometry-based metabolomics. Shen L; Yamamoto T; Tan XW; Ogata K; Ando E; Ozeki E; Matsuura E Atherosclerosis; 2020 Oct; 311():1-12. PubMed ID: 32911376 [TBL] [Abstract][Full Text] [Related]
3. Reduced oxidized LDL in T2D plaques is associated with a greater statin usage but not with future cardiovascular events. Singh P; Goncalves I; Tengryd C; Nitulescu M; Persson AF; To F; Bengtsson E; Volkov P; Orho-Melander M; Nilsson J; Edsfeldt A Cardiovasc Diabetol; 2020 Dec; 19(1):214. PubMed ID: 33317535 [TBL] [Abstract][Full Text] [Related]
4. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Ishigaki Y; Katagiri H; Gao J; Yamada T; Imai J; Uno K; Hasegawa Y; Kaneko K; Ogihara T; Ishihara H; Sato Y; Takikawa K; Nishimichi N; Matsuda H; Sawamura T; Oka Y Circulation; 2008 Jul; 118(1):75-83. PubMed ID: 18559699 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Temma T; Kondo N; Yoda K; Nishigori K; Onoe S; Shiomi M; Ono M; Saji H Ann Nucl Med; 2018 Jul; 32(6):425-429. PubMed ID: 29651757 [TBL] [Abstract][Full Text] [Related]
6. Radioiodinated peptide probe for selective detection of oxidized low density lipoprotein in atherosclerotic plaques. Nishigori K; Temma T; Yoda K; Onoe S; Kondo N; Shiomi M; Ono M; Saji H Nucl Med Biol; 2013 Jan; 40(1):97-103. PubMed ID: 23157986 [TBL] [Abstract][Full Text] [Related]
7. Oxylipin profile of human low-density lipoprotein is dependent on its extent of oxidation. Surendran A; Zhang H; Winter T; Edel A; Aukema H; Ravandi A Atherosclerosis; 2019 Sep; 288():101-111. PubMed ID: 31352271 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Rubbo H; Parthasarathy S; Barnes S; Kirk M; Kalyanaraman B; Freeman BA Arch Biochem Biophys; 1995 Dec; 324(1):15-25. PubMed ID: 7503550 [TBL] [Abstract][Full Text] [Related]
9. Phospholipid hydrolysis of mildly oxidized LDL reduces their cytotoxicity to cultured endothelial cells. Potential protective role against atherogenesis. Schmitt A; Nègre-Salvayre A; Troly M; Valdiguié P; Salvayre R Biochim Biophys Acta; 1995 Jun; 1256(3):284-92. PubMed ID: 7786889 [TBL] [Abstract][Full Text] [Related]
10. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. Folcik VA; Nivar-Aristy RA; Krajewski LP; Cathcart MK J Clin Invest; 1995 Jul; 96(1):504-10. PubMed ID: 7615823 [TBL] [Abstract][Full Text] [Related]
11. [Relationship between oxidized lipoprotein, angiogenesis and human coronary atherosclerotic plaque stabilization]. Wei LX; Tang QH; Sun L; Shi HY; Guo AT; You LB Zhonghua Bing Li Xue Za Zhi; 2006 Mar; 35(3):138-41. PubMed ID: 16630500 [TBL] [Abstract][Full Text] [Related]
12. Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Ravandi A; Babaei S; Leung R; Monge JC; Hoppe G; Hoff H; Kamido H; Kuksis A Lipids; 2004 Feb; 39(2):97-109. PubMed ID: 15134136 [TBL] [Abstract][Full Text] [Related]
13. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - Novel insights and future directions in diagnosis and therapy. Hartley A; Haskard D; Khamis R Trends Cardiovasc Med; 2019 Jan; 29(1):22-26. PubMed ID: 29934015 [TBL] [Abstract][Full Text] [Related]
14. Chronic exposure of bovine aortic endothelial cells to native and oxidized LDL modifies phosphatidylinositol metabolism. Hamilton CA; Thorin E; McCulloch J; Dominiczak MH; Reid JL Atherosclerosis; 1994 May; 107(1):55-63. PubMed ID: 7945559 [TBL] [Abstract][Full Text] [Related]
15. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Di Pietro N; Formoso G; Pandolfi A Vascul Pharmacol; 2016 Sep; 84():1-7. PubMed ID: 27256928 [TBL] [Abstract][Full Text] [Related]
16. Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages. Boullier A; Li Y; Quehenberger O; Palinski W; Tabas I; Witztum JL; Miller YI Arterioscler Thromb Vasc Biol; 2006 May; 26(5):1169-76. PubMed ID: 16484596 [TBL] [Abstract][Full Text] [Related]
17. Oxidized LDL-induced JAB1 influences NF-κB independent inflammatory signaling in human macrophages during foam cell formation. Schwarz A; Bonaterra GA; Schwarzbach H; Kinscherf R J Biomed Sci; 2017 Feb; 24(1):12. PubMed ID: 28173800 [TBL] [Abstract][Full Text] [Related]
18. Phospholipids in oxidized low density lipoproteins perturb the ability of macrophages to degrade internalized macromolecules and reduce intracellular cathepsin B activity. O'Neil J; Hoppe G; Hoff HF Atherosclerosis; 2003 Aug; 169(2):215-24. PubMed ID: 12921972 [TBL] [Abstract][Full Text] [Related]
19. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. van Puijvelde GH; Hauer AD; de Vos P; van den Heuvel R; van Herwijnen MJ; van der Zee R; van Eden W; van Berkel TJ; Kuiper J Circulation; 2006 Oct; 114(18):1968-76. PubMed ID: 17060383 [TBL] [Abstract][Full Text] [Related]
20. Oxidative modification of LDL: its pathological role in atherosclerosis. Itabe H Clin Rev Allergy Immunol; 2009 Aug; 37(1):4-11. PubMed ID: 18987785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]