These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. Voigt CA; Gordon DB; Mayo SL J Mol Biol; 2000 Jun; 299(3):789-803. PubMed ID: 10835284 [TBL] [Abstract][Full Text] [Related]
4. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design. Georgiev I; Lilien RH; Donald BR Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469 [TBL] [Abstract][Full Text] [Related]
5. A new framework for computational protein design through cost function network optimization. Traoré S; Allouche D; André I; de Givry S; Katsirelos G; Schiex T; Barbe S Bioinformatics; 2013 Sep; 29(17):2129-36. PubMed ID: 23842814 [TBL] [Abstract][Full Text] [Related]
6. Fast search algorithms for computational protein design. Traoré S; Roberts KE; Allouche D; Donald BR; André I; Schiex T; Barbe S J Comput Chem; 2016 May; 37(12):1048-58. PubMed ID: 26833706 [TBL] [Abstract][Full Text] [Related]
7. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Georgiev I; Lilien RH; Donald BR J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294 [TBL] [Abstract][Full Text] [Related]
8. A critical analysis of computational protein design with sparse residue interaction graphs. Jain S; Jou JD; Georgiev IS; Donald BR PLoS Comput Biol; 2017 Mar; 13(3):e1005346. PubMed ID: 28358804 [TBL] [Abstract][Full Text] [Related]
10. Protein design for diversity of sequences and conformations using dead-end elimination. Hanf KJ Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950 [TBL] [Abstract][Full Text] [Related]
11. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
13. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency. Hallen MA; Jou JD; Donald BR J Comput Biol; 2017 Jun; 24(6):536-546. PubMed ID: 27681371 [TBL] [Abstract][Full Text] [Related]
14. Branch-and-terminate: a combinatorial optimization algorithm for protein design. Gordon DB; Mayo SL Structure; 1999 Sep; 7(9):1089-98. PubMed ID: 10508778 [TBL] [Abstract][Full Text] [Related]
15. Fast gap-free enumeration of conformations and sequences for protein design. Roberts KE; Gainza P; Hallen MA; Donald BR Proteins; 2015 Oct; 83(10):1859-1877. PubMed ID: 26235965 [TBL] [Abstract][Full Text] [Related]
16. PLUG (Pruning of Local Unrealistic Geometries) removes restrictions on biophysical modeling for protein design. Hallen MA Proteins; 2019 Jan; 87(1):62-73. PubMed ID: 30378699 [TBL] [Abstract][Full Text] [Related]
17. An efficient parallel algorithm for accelerating computational protein design. Zhou Y; Xu W; Donald BR; Zeng J Bioinformatics; 2014 Jun; 30(12):i255-i263. PubMed ID: 24931991 [TBL] [Abstract][Full Text] [Related]
18. Progress in computational protein design. Lippow SM; Tidor B Curr Opin Biotechnol; 2007 Aug; 18(4):305-11. PubMed ID: 17644370 [TBL] [Abstract][Full Text] [Related]
19. Guaranteed Discrete Energy Optimization on Large Protein Design Problems. Simoncini D; Allouche D; de Givry S; Delmas C; Barbe S; Schiex T J Chem Theory Comput; 2015 Dec; 11(12):5980-9. PubMed ID: 26610100 [TBL] [Abstract][Full Text] [Related]
20. BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design. Jou JD; Jain S; Georgiev IS; Donald BR J Comput Biol; 2016 Jun; 23(6):413-24. PubMed ID: 26744898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]