These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27914050)

  • 1. Multistate Computational Protein Design with Backbone Ensembles.
    Davey JA; Chica RA
    Methods Mol Biol; 2017; 1529():161-179. PubMed ID: 27914050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.
    Davey JA; Chica RA
    Proteins; 2014 May; 82(5):771-84. PubMed ID: 24174277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistate approaches in computational protein design.
    Davey JA; Chica RA
    Protein Sci; 2012 Sep; 21(9):1241-52. PubMed ID: 22811394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design.
    Davey JA; Chica RA
    Protein Sci; 2015 Apr; 24(4):545-60. PubMed ID: 25492709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive multistate protein design.
    Vucinic J; Simoncini D; Ruffini M; Barbe S; Schiex T
    Bioinformatics; 2020 Jan; 36(1):122-130. PubMed ID: 31199465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Framework of Computational Protein Design.
    Samish I
    Methods Mol Biol; 2017; 1529():3-19. PubMed ID: 27914044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Normal Mode Analysis Methods in Computational Protein Design.
    Frappier V; Chartier M; Najmanovich R
    Methods Mol Biol; 2017; 1529():203-214. PubMed ID: 27914052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient algorithm for multistate protein design based on FASTER.
    Allen BD; Mayo SL
    J Comput Chem; 2010 Apr; 31(5):904-16. PubMed ID: 19637210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dead-end elimination for multistate protein design.
    Yanover C; Fromer M; Shifman JM
    J Comput Chem; 2007 Oct; 28(13):2122-9. PubMed ID: 17471460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles.
    Allen BD; Nisthal A; Mayo SL
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19838-43. PubMed ID: 21045132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational protein design for given backbone: recent progresses in general method-related aspects.
    Liu H; Chen Q
    Curr Opin Struct Biol; 2016 Aug; 39():89-95. PubMed ID: 27348345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Stable Globular Proteins Using Negative Design with Non-native Backbone Ensembles.
    Davey JA; Damry AM; Euler CK; Goto NK; Chica RA
    Structure; 2015 Nov; 23(11):2011-21. PubMed ID: 26412333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function.
    Xiong P; Chen Q; Liu H
    Methods Mol Biol; 2017; 1529():217-226. PubMed ID: 27914053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BBK* (Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces.
    Ojewole AA; Jou JD; Fowler VG; Donald BR
    J Comput Biol; 2018 Jul; 25(7):726-739. PubMed ID: 29641249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design.
    Humphris EL; Kortemme T
    Structure; 2008 Dec; 16(12):1777-88. PubMed ID: 19081054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular flexibility in computational protein design: an algorithmic perspective.
    Bouchiba Y; Cortés J; Schiex T; Barbe S
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33959778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
    Smith CA; Kortemme T
    PLoS One; 2011; 6(7):e20451. PubMed ID: 21789164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.