These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27914055)

  • 1. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the accuracy of protein design using native secondary sub-structures.
    Movahedi M; Zare-Mirakabad F; Arab SS
    BMC Bioinformatics; 2016 Sep; 17(1):353. PubMed ID: 27597167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds.
    Wei KY; Moschidi D; Bick MJ; Nerli S; McShan AC; Carter LP; Huang PS; Fletcher DA; Sgourakis NG; Boyken SE; Baker D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7208-7215. PubMed ID: 32188784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to control the binding mode of de novo designed protein interactions.
    Der BS; Kuhlman B
    Curr Opin Struct Biol; 2013 Aug; 23(4):639-46. PubMed ID: 23731800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design of modular peptide-binding proteins by superhelical matching.
    Wu K; Bai H; Chang YT; Redler R; McNally KE; Sheffler W; Brunette TJ; Hicks DR; Morgan TE; Stevens TJ; Broerman A; Goreshnik I; DeWitt M; Chow CM; Shen Y; Stewart L; Derivery E; Silva DA; Bhabha G; Ekiert DC; Baker D
    Nature; 2023 Apr; 616(7957):581-589. PubMed ID: 37020023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation.
    Sheffler W; Baker D
    Protein Sci; 2009 Jan; 18(1):229-39. PubMed ID: 19177366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular repeat protein sculpting using rigid helical junctions.
    Brunette TJ; Bick MJ; Hansen JM; Chow CM; Kollman JM; Baker D
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8870-8875. PubMed ID: 32245816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures.
    Zhou J; Panaitiu AE; Grigoryan G
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1059-1068. PubMed ID: 31892539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins.
    Planas-Iglesias J; Borko S; Swiatkowski J; Elias M; Havlasek M; Salamon O; Grakova E; Kunka A; Martinovic T; Damborsky J; Martinovic J; Bednar D
    Nucleic Acids Res; 2024 Jul; 52(W1):W159-W169. PubMed ID: 38801076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of de novo designed water-soluble and transmembrane β-barrels by in silico folding and melting.
    Hermosilla AM; Berner C; Ovchinnikov S; Vorobieva AA
    Protein Sci; 2024 Jul; 33(7):e5033. PubMed ID: 38864690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection on protein structure, interaction, and sequence.
    Chi PB; Liberles DA
    Protein Sci; 2016 Jul; 25(7):1168-78. PubMed ID: 26808055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massively parallel de novo protein design for targeted therapeutics.
    Chevalier A; Silva DA; Rocklin GJ; Hicks DR; Vergara R; Murapa P; Bernard SM; Zhang L; Lam KH; Yao G; Bahl CD; Miyashita SI; Goreshnik I; Fuller JT; Koday MT; Jenkins CM; Colvin T; Carter L; Bohn A; Bryan CM; Fernández-Velasco DA; Stewart L; Dong M; Huang X; Jin R; Wilson IA; Fuller DH; Baker D
    Nature; 2017 Oct; 550(7674):74-79. PubMed ID: 28953867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations.
    Brodie NI; Popov KI; Petrotchenko EV; Dokholyan NV; Borchers CH
    Sci Adv; 2017 Jul; 3(7):e1700479. PubMed ID: 28695211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Match_Motif: A rapid computational tool to assist in protein-protein interaction design.
    Zacharias M
    Protein Sci; 2022 Jan; 31(1):147-157. PubMed ID: 34648221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enumerative algorithm for de novo design of proteins with diverse pocket structures.
    Basanta B; Bick MJ; Bera AK; Norn C; Chow CM; Carter LP; Goreshnik I; Dimaio F; Baker D
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22135-22145. PubMed ID: 32839327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparks of function by de novo protein design.
    Chu AE; Lu T; Huang PS
    Nat Biotechnol; 2024 Feb; 42(2):203-215. PubMed ID: 38361073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression.
    Bale JB; Park RU; Liu Y; Gonen S; Gonen T; Cascio D; King NP; Yeates TO; Baker D
    Protein Sci; 2015 Oct; 24(10):1695-701. PubMed ID: 26174163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROSCA: an online platform for humanized scaffold mining facilitating rational protein engineering.
    Wang X; Zhang Y; Li Z; Duan Z; Guo M; Wang Z; Zhu F; Xue W
    Nucleic Acids Res; 2024 Jul; 52(W1):W272-W279. PubMed ID: 38738624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling of structure and sequence space of small protein folds.
    Linsky TW; Noble K; Tobin AR; Crow R; Carter L; Urbauer JL; Baker D; Strauch EM
    Nat Commun; 2022 Nov; 13(1):7151. PubMed ID: 36418330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.