These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 27914055)

  • 21. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homology Modeling of Protein Targets with MODELLER.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():231-249. PubMed ID: 31452109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current updates on computer aided protein modeling and designing.
    Khan FI; Wei DQ; Gu KR; Hassan MI; Tabrez S
    Int J Biol Macromol; 2016 Apr; 85():48-62. PubMed ID: 26730484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational protein design: a novel path to future protein drugs.
    Rosenberg M; Goldblum A
    Curr Pharm Des; 2006; 12(31):3973-97. PubMed ID: 17100608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo protein design: fully automated sequence selection.
    Dahiyat BI; Mayo SL
    Science; 1997 Oct; 278(5335):82-7. PubMed ID: 9311930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Flexible Protein-Peptide Docking Using CABS-Dock.
    Ciemny MP; Kurcinski M; Kozak KJ; Kolinski A; Kmiecik S
    Methods Mol Biol; 2017; 1561():69-94. PubMed ID: 28236234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between evolutionary structural development and protein folding.
    Nagao C; Terada TP; Yomo T; Sasai M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18950-5. PubMed ID: 16365314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sibe: a computation tool to apply protein sequence statistics to predict folding and design in silico.
    Cheung NJ; Yu W
    BMC Bioinformatics; 2019 Sep; 20(1):455. PubMed ID: 31492097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein WISDOM: a workbench for in silico de novo design of biomolecules.
    Smadbeck J; Peterson MB; Khoury GA; Taylor MS; Floudas CA
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo and inverse folding predictions of protein structure and dynamics.
    Godzik A; Kolinski A; Skolnick J
    J Comput Aided Mol Des; 1993 Aug; 7(4):397-438. PubMed ID: 8229093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo protein structure prediction using ultra-fast molecular dynamics simulation.
    Cheung NJ; Yu W
    PLoS One; 2018; 13(11):e0205819. PubMed ID: 30458007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function.
    Bowie JU; Eisenberg D
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4436-40. PubMed ID: 8183927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Protein Design Through Grafting and Stabilization.
    Zhu C; Mowrey DD; Dokholyan NV
    Methods Mol Biol; 2017; 1529():227-241. PubMed ID: 27914054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.