These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27914071)

  • 1. Differential Radial Capillary Action of Ligand Assay (DRaCALA) for High-Throughput Detection of Protein-Metabolite Interactions in Bacteria.
    Orr MW; Lee VT
    Methods Mol Biol; 2017; 1535():25-41. PubMed ID: 27914071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions.
    Roelofs KG; Wang J; Sintim HO; Lee VT
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15528-33. PubMed ID: 21876132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mass spectrometry-based non-radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins.
    Cimdins-Ahne A; Chernobrovkin A; Kim SK; Lee VT; Zubarev RA; Römling U
    J Mass Spectrom; 2022 Mar; 57(4):e4822. PubMed ID: 35362254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing RNA interactions with proteins by DRaCALA.
    Patel DK; Gebbie MP; Lee VT
    Methods Enzymol; 2014; 549():489-512. PubMed ID: 25432762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Radial Capillary Action of Ligand Assay (DRaCALA).
    Seminara AB; Turdiev A; Turdiev H; Lee VT
    Curr Protoc Mol Biol; 2019 Apr; 126(1):e84. PubMed ID: 30508276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid assay for affinity and kinetics of molecular interactions with nucleic acids.
    Donaldson GP; Roelofs KG; Luo Y; Sintim HO; Lee VT
    Nucleic Acids Res; 2012 Apr; 40(7):e48. PubMed ID: 22210888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the Binding Proteins of Small Ligands with the Differential Radial Capillary Action of Ligand Assay (DRaCALA).
    Schicketanz ML; Długosz P; Zhang YE
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33818559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening Chemoreceptor-Ligand Interactions by High-Throughput Thermal-Shift Assays.
    Ehrhardt MKG; Warring SL; Gerth ML
    Methods Mol Biol; 2018; 1729():281-290. PubMed ID: 29429098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening to Identify Chemoreceptor Ligands.
    Fernández M; Ortega Á; Rico-Jiménez M; Martín-Mora D; Daddaoua A; Matilla MA; Krell T
    Methods Mol Biol; 2018; 1729():291-301. PubMed ID: 29429099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.
    Orr MW; Donaldson GP; Severin GB; Wang J; Sintim HO; Waters CM; Lee VT
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E5048-57. PubMed ID: 26305945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic cloning of an ORFeome using the Gateway system.
    Matsuyama A; Yoshida M
    Methods Mol Biol; 2009; 577():11-24. PubMed ID: 19718505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies.
    Day CJ; Hartley-Tassell LE; Korolik V
    Methods Mol Biol; 2017; 1512():51-63. PubMed ID: 27885598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When the PilZ don't work: effectors for cyclic di-GMP action in bacteria.
    Ryan RP; Tolker-Nielsen T; Dow JM
    Trends Microbiol; 2012 May; 20(5):235-42. PubMed ID: 22444828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor.
    Williamson LL; Borlee BR; Schloss PD; Guan C; Allen HK; Handelsman J
    Appl Environ Microbiol; 2005 Oct; 71(10):6335-44. PubMed ID: 16204555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.
    Chou SH; Galperin MY
    J Bacteriol; 2016 Jan; 198(1):32-46. PubMed ID: 26055114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel functional high-throughput screening system for pathogen effectors in the yeast Saccharomyces cerevisiae.
    Tabuchi M; Kawai Y; Nishie-Fujita M; Akada R; Izumi T; Yanatori I; Miyashita N; Ouchi K; Kishi F
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2261-7. PubMed ID: 19809180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo biotinylated proteins as targets for phage-display selection experiments.
    Scholle MD; Collart FR; Kay BK
    Protein Expr Purif; 2004 Sep; 37(1):243-52. PubMed ID: 15294305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria.
    Pham TH; Liang ZX; Marcellin E; Turner MS
    Curr Genet; 2016 Nov; 62(4):731-738. PubMed ID: 27074767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of ligands for bacterial sensor proteins.
    Fernández M; Morel B; Corral-Lugo A; Rico-Jiménez M; Martín-Mora D; López-Farfán D; Reyes-Darias JA; Matilla MA; Ortega Á; Krell T
    Curr Genet; 2016 Feb; 62(1):143-7. PubMed ID: 26511375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain.
    Ryjenkov DA; Tarutina M; Moskvin OV; Gomelsky M
    J Bacteriol; 2005 Mar; 187(5):1792-8. PubMed ID: 15716451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.