These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Pereira ADES; Oliveira HC; Fraceto LF Sci Rep; 2019 May; 9(1):7135. PubMed ID: 31073210 [TBL] [Abstract][Full Text] [Related]
4. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Bagre AP; Jain K; Jain NK Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363 [TBL] [Abstract][Full Text] [Related]
5. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Rahaiee S; Shojaosadati SA; Hashemi M; Moini S; Razavi SH Int J Biol Macromol; 2015 Aug; 79():423-32. PubMed ID: 25934104 [TBL] [Abstract][Full Text] [Related]
6. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Azevedo MA; Bourbon AI; Vicente AA; Cerqueira MA Int J Biol Macromol; 2014 Nov; 71():141-6. PubMed ID: 24863916 [TBL] [Abstract][Full Text] [Related]
7. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Songsurang K; Praphairaksit N; Siraleartmukul K; Muangsin N Arch Pharm Res; 2011 Apr; 34(4):583-92. PubMed ID: 21544723 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications. Liu Y; Sun Y; He S; Zhu Y; Ao M; Li J; Cao Y Int J Biol Macromol; 2013 Jun; 57():213-7. PubMed ID: 23511059 [TBL] [Abstract][Full Text] [Related]
9. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. Silva de Melo NF; Campos EV; Gonçalves CM; de Paula E; Pasquoto T; de Lima R; Rosa AH; Fraceto LF Colloids Surf B Biointerfaces; 2014 Sep; 121():66-73. PubMed ID: 24934456 [TBL] [Abstract][Full Text] [Related]
10. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163 [TBL] [Abstract][Full Text] [Related]
11. Response Surface Methodology for Statistical Optimization of Chitosan/Alginate Nanoparticles as a Vehicle for Recombinant Human Bone Morphogenetic Protein-2 Delivery. Zohri M; Akbari Javar H; Gazori T; Khoshayand MR; Aghaee-Bakhtiari SH; Ghahremani MH Int J Nanomedicine; 2020; 15():8345-8356. PubMed ID: 33154637 [TBL] [Abstract][Full Text] [Related]
12. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Hashad RA; Ishak RA; Fahmy S; Mansour S; Geneidi AS Int J Biol Macromol; 2016 May; 86():50-8. PubMed ID: 26783636 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Nakasato DY; Pereira AES; Oliveira JL; Oliveira HC; Fraceto LF Ecotoxicol Environ Saf; 2017 Aug; 142():369-374. PubMed ID: 28437729 [TBL] [Abstract][Full Text] [Related]
14. Development and Characterization of Gefitinib Loaded Polymeric Nanoparticles by Ionic Gelation Method. Gupta M; Marwaha RK; Dureja H Pharm Nanotechnol; 2017; 5(4):301-309. PubMed ID: 28982345 [TBL] [Abstract][Full Text] [Related]
15. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. Raja MA; Katas H; Jing Wen T PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222 [TBL] [Abstract][Full Text] [Related]
16. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Fan W; Yan W; Xu Z; Ni H Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934 [TBL] [Abstract][Full Text] [Related]
17. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Du Z; Liu J; Zhang T; Yu Y; Zhang Y; Zhai J; Huang H; Wei S; Ding L; Liu B Food Chem; 2019 Jul; 286():530-536. PubMed ID: 30827643 [TBL] [Abstract][Full Text] [Related]
18. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Chen F; Zhang ZR; Huang Y Int J Pharm; 2007 May; 336(1):166-73. PubMed ID: 17145144 [TBL] [Abstract][Full Text] [Related]
19. Pectin/Chitosan/Tripolyphosphate Nanoparticles: Efficient Carriers for Reducing Soil Sorption, Cytotoxicity, and Mutagenicity of Paraquat and Enhancing Its Herbicide Activity. Rashidipour M; Maleki A; Kordi S; Birjandi M; Pajouhi N; Mohammadi E; Heydari R; Rezaee R; Rasoulian B; Davari B J Agric Food Chem; 2019 May; 67(20):5736-5745. PubMed ID: 31042035 [TBL] [Abstract][Full Text] [Related]
20. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Gan Q; Wang T Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]