These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 27914252)
1. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Zheng K; Dai X; Lu M; Hüser N; Taccardi N; Boccaccini AR Colloids Surf B Biointerfaces; 2017 Feb; 150():159-167. PubMed ID: 27914252 [TBL] [Abstract][Full Text] [Related]
2. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503 [TBL] [Abstract][Full Text] [Related]
3. Cu-releasing bioactive glass/polycaprolactone coating on Mg with antibacterial and anticorrosive properties for bone tissue engineering. Yang Y; Zheng K; Liang R; Mainka A; Taccardi N; Roether JA; Detsch R; Goldmann WH; Virtanen S; Boccaccini AR Biomed Mater; 2017 Oct; 13(1):015001. PubMed ID: 29072194 [TBL] [Abstract][Full Text] [Related]
4. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Li J; Zhai D; Lv F; Yu Q; Ma H; Yin J; Yi Z; Liu M; Chang J; Wu C Acta Biomater; 2016 May; 36():254-66. PubMed ID: 26965395 [TBL] [Abstract][Full Text] [Related]
5. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Bari A; Bloise N; Fiorilli S; Novajra G; Vallet-Regí M; Bruni G; Torres-Pardo A; González-Calbet JM; Visai L; Vitale-Brovarone C Acta Biomater; 2017 Jun; 55():493-504. PubMed ID: 28412552 [TBL] [Abstract][Full Text] [Related]
6. Extracellular and intracellular effects of bioactive glass nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and bone regeneration in zebrafish osteoporosis model. Meng L; Zhao P; Jiang Y; You J; Xu Z; Yu K; Boccaccini AR; Ma J; Zheng K Acta Biomater; 2024 Jan; 174():412-427. PubMed ID: 38040077 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of Cu-Containing Bioactive Glass Nanoparticles in Gelatin-Coated Scaffolds Enhances Bioactivity and Osteogenic Activity. Zheng K; Wu J; Li W; Dippold D; Wan Y; Boccaccini AR ACS Biomater Sci Eng; 2018 May; 4(5):1546-1557. PubMed ID: 33445312 [TBL] [Abstract][Full Text] [Related]
8. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Li H; Li J; Jiang J; Lv F; Chang J; Chen S; Wu C Acta Biomater; 2017 May; 54():399-410. PubMed ID: 28315493 [TBL] [Abstract][Full Text] [Related]
9. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470 [TBL] [Abstract][Full Text] [Related]
10. Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Oudadesse H; Dietrich E; Gal YL; Pellen P; Bureau B; Mostafa AA; Cathelineau G Biomed Mater; 2011 Jun; 6(3):035006. PubMed ID: 21505231 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. Nawaz Q; Rehman MAU; Burkovski A; Schmidt J; Beltrán AM; Shahid A; Alber NK; Peukert W; Boccaccini AR J Mater Sci Mater Med; 2018 May; 29(5):64. PubMed ID: 29737411 [TBL] [Abstract][Full Text] [Related]
13. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5. Wetzel R; Bartzok O; Brauer DS J Mater Sci Mater Med; 2020 Oct; 31(10):86. PubMed ID: 33037502 [TBL] [Abstract][Full Text] [Related]
14. Monodispersed Bioactive Glass Nanoclusters with Ultralarge Pores and Intrinsic Exceptionally High miRNA Loading for Efficiently Enhancing Bone Regeneration. Xue Y; Guo Y; Yu M; Wang M; Ma PX; Lei B Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28737023 [TBL] [Abstract][Full Text] [Related]
15. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Lei B; Chen X; Wang Y; Zhao N; Du C; Fang L J Biomed Mater Res A; 2010 Sep; 94(4):1091-9. PubMed ID: 20694976 [TBL] [Abstract][Full Text] [Related]
16. Sol-gel processing of bioactive glass nanoparticles: A review. Zheng K; Boccaccini AR Adv Colloid Interface Sci; 2017 Nov; 249():363-373. PubMed ID: 28364954 [TBL] [Abstract][Full Text] [Related]
17. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Mneimne M; Hill RG; Bushby AJ; Brauer DS Acta Biomater; 2011 Apr; 7(4):1827-34. PubMed ID: 21115144 [TBL] [Abstract][Full Text] [Related]
18. Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles. Cheng D; Liu D; Tang T; Zhang X; Jia X; Cai Q; Yang X Biomed Mater; 2017 Apr; 12(2):025019. PubMed ID: 28388594 [TBL] [Abstract][Full Text] [Related]
19. Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities. Zheng K; Lu M; Liu Y; Chen Q; Taccardi N; Hüser N; Boccaccini AR Biomed Mater; 2016 Jun; 11(3):035012. PubMed ID: 27272061 [TBL] [Abstract][Full Text] [Related]
20. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Sriranganathan D; Kanwal N; Hing KA; Hill RG J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]