These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27914260)

  • 21. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.
    Mahmoud M; Parameswaran P; Torres CI; Rittmann BE
    Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC).
    Thygesen A; Marzorati M; Boon N; Thomsen AB; Verstraete W
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):855-65. PubMed ID: 21191786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Release of substituents from phenolic compounds during oxidative coupling reactions.
    Dec J; Haider K; Bollag JM
    Chemosphere; 2003 Jul; 52(3):549-56. PubMed ID: 12738292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature.
    Asztalos JR; Kim Y
    Water Res; 2015 Dec; 87():503-12. PubMed ID: 26051356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental fate of phenolic endocrine disruptors: field and laboratory studies.
    Giger W; Gabriel FL; Jonkers N; Wettstein FE; Kohler HP
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):3941-63. PubMed ID: 19736229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen Production in Microbial Electrolysis Cells Using an Alginate Hydrogel Bioanode Encapsulated with a Filter Bag.
    Hirsch LO; Gandu B; Chiliveru A; Dubrovin IA; Jukanti A; Schechter A; Cahan R
    Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel core-shell Fe@Co nanoparticles uniformly modified graphite felt cathode (Fe@Co/GF) for efficient bio-electro-Fenton degradation of phenolic compounds.
    Li B; Sun JD; Tang C; Yan ZY; Zhou J; Wu XY; Jia HH; Yong XY
    Sci Total Environ; 2021 Mar; 760():143415. PubMed ID: 33248786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.
    Werner CM; Hoppe-Jones C; Saikaly PE; Logan BE; Amy GL
    Water Res; 2015 Apr; 73():56-67. PubMed ID: 25644628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor.
    Körbahti BK; Tanyolaç A
    Water Res; 2003 Apr; 37(7):1505-14. PubMed ID: 12600378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.
    Klinke HB; Olsson L; Thomsen AB; Ahring BK
    Biotechnol Bioeng; 2003 Mar; 81(6):738-47. PubMed ID: 12529889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence of fermentative process to phenolic toxicity in groundwater.
    Wu Y; Lerner DN; Banwart SA; Thornton SF; Pickup RW
    J Environ Qual; 2006; 35(6):2021-5. PubMed ID: 17071871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.
    Lee SJ; Lee JH; Yang X; Kim SB; Lee JH; Yoo HY; Park C; Kim SW
    Biotechnol J; 2015 Dec; 10(12):1920-8. PubMed ID: 26479290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.
    Zhao Y; Cao W; Wang Z; Zhang B; Chen K; Ouyang P
    Bioresour Technol; 2016 Feb; 202():152-7. PubMed ID: 26708482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic oxidative transformation of phenols by Trametes trogii laccases.
    Chakroun H; Bouaziz M; Dhouib A; Sayadi S
    Environ Technol; 2012 Sep; 33(16-18):1977-85. PubMed ID: 23240190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of phenolic monomers on growth of Acidothermus cellulolyticus.
    Joh LD; Rezaei F; Barabote RD; Parales JV; Parales RE; Berry AM; Vandergheynst JS
    Biotechnol Prog; 2011; 27(1):23-31. PubMed ID: 21312351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light.
    Santos GT; Santos PS; Duarte AC
    J Hazard Mater; 2016 Aug; 313():201-8. PubMed ID: 27085101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crocin bleaching assay (CBA) in structure-radical scavenging activity studies of selected phenolic compounds.
    Ordoudi SA; Tsimidou MZ
    J Agric Food Chem; 2006 Dec; 54(25):9347-56. PubMed ID: 17147417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.