These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27914260)

  • 41. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation.
    Miao L; Li Q; Diao A; Zhang X; Ma Y
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5163-73. PubMed ID: 25758959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M; Xu CC
    Bioresour Technol; 2010 Apr; 101(7):2483-90. PubMed ID: 20031393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18.
    Zhang J; Geng A; Yao C; Lu Y; Li Q
    Bioresour Technol; 2012 Oct; 121():369-78. PubMed ID: 22864173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of yeast culture and phenolic acids on the physiology of rumen fermentation determined in vitro.
    Zelenák I; Jalc D; Siroka P
    Physiol Res; 1997; 46(3):209-13. PubMed ID: 9728509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advantages of residual phenol in coal chemical wastewater as a co-metabolic substrate for naphthalene degradation by microbial electrolysis cell.
    Ding P; Wu P; Cao Q; Liu H; Chen C; Cui MH; Liu H
    Sci Total Environ; 2023 Nov; 901():166342. PubMed ID: 37611718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequential Transhydroxylations Converting Hydroxyhydroquinone to Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis.
    Brune A; Schnell S; Schink B
    Appl Environ Microbiol; 1992 Jun; 58(6):1861-8. PubMed ID: 16348719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fermentative Production of Phenolic Glucosides by Escherichia coli with an Engineered Glucosyltransferase from Rhodiola sachalinensis.
    He Q; Yin H; Jiang J; Bai Y; Chen N; Liu S; Zhuang Y; Liu T
    J Agric Food Chem; 2017 Jun; 65(23):4691-4697. PubMed ID: 28547990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal and upgrading of lignocellulosic fermentation inhibitors by in situ biocatalysis and liquid-liquid extraction.
    Tomek KJ; Saldarriaga CR; Velasquez FP; Liu T; Hodge DB; Whitehead TA
    Biotechnol Bioeng; 2015 Mar; 112(3):627-32. PubMed ID: 25311910
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilization of some phenolic compounds by Azotobacter chroococcum and their effect on growth and nitrogenase activity.
    Abd-Alla MH
    Microbiologia; 1994 Sep; 10(3):273-8. PubMed ID: 7873103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phenolic compounds responsible for the superoxide dismutase-like activity in high-Brix apple vinegar.
    Nakamura K; Ogasawara Y; Endou K; Fujimori S; Koyama M; Akano H
    J Agric Food Chem; 2010 Sep; 58(18):10124-32. PubMed ID: 20795622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches.
    Mosele JI; Martín-Peláez S; Macià A; Farràs M; Valls RM; Catalán Ú; Motilva MJ
    Mol Nutr Food Res; 2014 Sep; 58(9):1809-19. PubMed ID: 24990102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges.
    Zhang Y; Angelidaki I
    Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Branch-specific detection of phenols and assessment of ground water solubility].
    Fischer F; Kerndorff H; Kühn S
    Schriftenr Ver Wasser Boden Lufthyg; 2000; 107():I-X, 1-108. PubMed ID: 11225284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in
    Tsagogiannis E; Asimakoula S; Drainas AP; Marinakos O; Boti VI; Kosma IS; Koukkou AI
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.
    Cusick RD; Bryan B; Parker DS; Merrill MD; Mehanna M; Kiely PD; Liu G; Logan BE
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2053-63. PubMed ID: 21305277
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols.
    Chen Z; Zhang X; Cao H; Huang Y
    Analyst; 2013 Apr; 138(8):2343-9. PubMed ID: 23457709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass.
    Baral NR; Shah A
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9151-72. PubMed ID: 25267161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.