These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27914648)

  • 1. Atomization method for verifying size effects of inhalable particles on lung damage of mice.
    Tao C; Tang Y; Zhang L; Tian Y; Zhang Y
    Sci Total Environ; 2017 Feb; 579():1476-1484. PubMed ID: 27914648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine vision analysis on abnormal respiratory conditions of mice inhaling particles containing cadmium.
    Tao C; Zhang Y; Gao K
    Ecotoxicol Environ Saf; 2019 Apr; 170():600-610. PubMed ID: 30576895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model.
    Cassee FR; Muijser H; Duistermaat E; Freijer JJ; Geerse KB; Marijnissen JC; Arts JH
    Arch Toxicol; 2002 Jun; 76(5-6):277-86. PubMed ID: 12107645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period.
    Mitsakou C; Housiadas C; Eleftheriadis K; Vratolis S; Helmis C; Asimakopoulos D
    Indoor Air; 2007 Apr; 17(2):143-52. PubMed ID: 17391237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler.
    Broniarz-Press L; Sosnowski TR; Matuszak M; Ochowiak M; Jabłczyńska K
    Int J Pharm; 2015 May; 485(1-2):41-9. PubMed ID: 25735665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization.
    Qi A; Friend JR; Yeo LY; Morton DA; McIntosh MP; Spiccia L
    Lab Chip; 2009 Aug; 9(15):2184-93. PubMed ID: 19606295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct fluorescent labeling for efficient biological assessment of inhalable particles.
    Poudel BK; Park JH; Lim J; Byeon JH
    Nanotoxicology; 2017 Oct; 11(8):953-963. PubMed ID: 29058499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalidation of in vitro continuous flow exposure systems as alternatives to in vivo inhalation safety evaluation experimentations: outcome from MAAPHRI-PCRD5 research program.
    Morin JP; Hasson V; Fall M; Papaioanou E; Preterre D; Gouriou F; Keravec V; Konstandopoulos A; Dionnet F
    Exp Toxicol Pathol; 2008 Jun; 60(2-3):195-205. PubMed ID: 18472257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function and performance of aqueous aerosol devices for inhalation therapy.
    Carvalho TC; McConville JT
    J Pharm Pharmacol; 2016 May; 68(5):556-78. PubMed ID: 27061412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The analysis of pneumatic atomization of Newtonian and non-Newtonian fluids for different medical nebulizers.
    Ochowiak M; Matuszak M; Włodarczak S
    Drug Dev Ind Pharm; 2017 Dec; 43(12):1999-2010. PubMed ID: 28737431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency ultrasonic atomization for drug delivery to rodent animal models - optimal particle size for lung inhalation of difluoromethyl ornithine.
    Zhang G; Fandrey C; Naqwi A; Wiedmann TS
    Exp Lung Res; 2008 Jun; 34(5):209-23. PubMed ID: 18465401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thoracoabdominal respiratory disorder induced by cadmium aerosol and analyzed with a new machine vision model in vivo.
    Tao C; Zhao X; Gao K; Ji W; Zhang Y
    Sci Total Environ; 2019 Sep; 683():668-680. PubMed ID: 31150887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lung damage analyzed by machine vision on tissue sections of mice.
    Tao C; Zhang Y
    Arch Toxicol; 2018 Jan; 92(1):425-439. PubMed ID: 28674726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs.
    Nadithe V; Rahamatalla M; Finlay WH; Mercer JR; Samuel J
    J Pharm Sci; 2003 May; 92(5):1066-76. PubMed ID: 12712427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values.
    Oller AR; Oberdörster G
    Regul Toxicol Pharmacol; 2010; 57(2-3):181-94. PubMed ID: 20172011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.