These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27915289)
1. Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains. Homma K; Noguchi T; Fukuchi S Nucleic Acids Res; 2016 Dec; 44(21):10051-10061. PubMed ID: 27915289 [TBL] [Abstract][Full Text] [Related]
2. Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Kumar N; Kaushik R; Tennakoon C; Uversky VN; Longhi S; Zhang KYJ; Bhatia S Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866372 [TBL] [Abstract][Full Text] [Related]
3. Codon selection reduces GC content bias in nucleic acids encoding for intrinsically disordered proteins. Oldfield CJ; Peng Z; Uversky VN; Kurgan L Cell Mol Life Sci; 2020 Jan; 77(1):149-160. PubMed ID: 31175370 [TBL] [Abstract][Full Text] [Related]
4. Intrinsically disordered regions have specific functions in mitochondrial and nuclear proteins. Homma K; Fukuchi S; Nishikawa K; Sakamoto S; Sugawara H Mol Biosyst; 2012 Jan; 8(1):247-55. PubMed ID: 21866296 [TBL] [Abstract][Full Text] [Related]
5. Both Intrinsically Disordered Regions and Structural Domains Evolve Rapidly in Immune-Related Mammalian Proteins. Homma K; Anbo H; Noguchi T; Fukuchi S Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518031 [TBL] [Abstract][Full Text] [Related]
6. Codon usage in plastid genes is correlated with context, position within the gene, and amino acid content. Morton BR; So BG J Mol Evol; 2000 Feb; 50(2):184-93. PubMed ID: 10684352 [TBL] [Abstract][Full Text] [Related]
7. Codon usage bias is correlated with gene expression levels in the fission yeast Schizosaccharomyces pombe. Hiraoka Y; Kawamata K; Haraguchi T; Chikashige Y Genes Cells; 2009 Apr; 14(4):499-509. PubMed ID: 19335619 [TBL] [Abstract][Full Text] [Related]
8. Exon Elongation Added Intrinsically Disordered Regions to the Encoded Proteins and Facilitated the Emergence of the Last Eukaryotic Common Ancestor. Fukuchi S; Noguchi T; Anbo H; Homma K Mol Biol Evol; 2023 Jan; 40(1):. PubMed ID: 36529689 [TBL] [Abstract][Full Text] [Related]
9. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. Kanaya S; Yamada Y; Kinouchi M; Kudo Y; Ikemura T J Mol Evol; 2001; 53(4-5):290-8. PubMed ID: 11675589 [TBL] [Abstract][Full Text] [Related]
10. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Zhou M; Wang T; Fu J; Xiao G; Liu Y Mol Microbiol; 2015 Sep; 97(5):974-87. PubMed ID: 26032251 [TBL] [Abstract][Full Text] [Related]
11. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis. Kahali B; Basak S; Ghosh TC Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174 [TBL] [Abstract][Full Text] [Related]
12. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and arabidopsis. Mukhopadhyay P; Basak S; Ghosh TC DNA Res; 2008 Dec; 15(6):347-56. PubMed ID: 18827062 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic protein disorder reduces small-scale gene duplicability. Banerjee S; Feyertag F; Alvarez-Ponce D DNA Res; 2017 Aug; 24(4):435-444. PubMed ID: 28430886 [TBL] [Abstract][Full Text] [Related]
14. Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Fuglsang A Antonie Van Leeuwenhoek; 2004 Aug; 86(2):135-47. PubMed ID: 15280647 [TBL] [Abstract][Full Text] [Related]
15. Sequence conservation of protein binding segments in intrinsically disordered regions. Ota H; Fukuchi S Biochem Biophys Res Commun; 2017 Dec; 494(3-4):602-607. PubMed ID: 29066345 [TBL] [Abstract][Full Text] [Related]
16. Codon bias as a factor in regulating expression via translation rate in the human genome. Lavner Y; Kotlar D Gene; 2005 Jan; 345(1):127-38. PubMed ID: 15716084 [TBL] [Abstract][Full Text] [Related]
17. Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes. Mukhopadhyay P; Basak S; Ghosh TC Gene; 2007 Oct; 400(1-2):71-81. PubMed ID: 17629420 [TBL] [Abstract][Full Text] [Related]
18. Codon optimality controls differential mRNA translation during amino acid starvation. Saikia M; Wang X; Mao Y; Wan J; Pan T; Qian SB RNA; 2016 Nov; 22(11):1719-1727. PubMed ID: 27613579 [TBL] [Abstract][Full Text] [Related]
19. Optimization protein productivity of human interleukin-2 through codon usage, gene copy number and intracellular tRNA concentration in CHO cells. Ou KC; Wang CY; Liu KT; Chen YL; Chen YC; Lai MD; Yen MC Biochem Biophys Res Commun; 2014 Nov; 454(2):347-52. PubMed ID: 25451252 [TBL] [Abstract][Full Text] [Related]
20. Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids. Cui Z; Mureev S; Polinkovsky ME; Tnimov Z; Guo Z; Durek T; Jones A; Alexandrov K ACS Synth Biol; 2017 Mar; 6(3):535-544. PubMed ID: 27966891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]