These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 27915984)
1. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines. Chellapandi P; Prisilla A Curr Protein Pept Sci; 2017; 18(5):412-424. PubMed ID: 27915984 [TBL] [Abstract][Full Text] [Related]
2. Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. Prisilla A; Prathiviraj R; Chellapandi P J Mol Evol; 2017 Apr; 84(4):174-186. PubMed ID: 28382496 [TBL] [Abstract][Full Text] [Related]
3. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. Prisilla A; Prathiviraj R; Sasikala R; Chellapandi P Infect Genet Evol; 2016 Oct; 44():17-27. PubMed ID: 27320793 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. Han S; Arvai AS; Clancy SB; Tainer JA J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250 [TBL] [Abstract][Full Text] [Related]
5. Cross-reactivity of anthrax and C2 toxin: protective antigen promotes the uptake of botulinum C2I toxin into human endothelial cells. Kronhardt A; Rolando M; Beitzinger C; Stefani C; Leuber M; Flatau G; Popoff MR; Benz R; Lemichez E PLoS One; 2011; 6(8):e23133. PubMed ID: 21850257 [TBL] [Abstract][Full Text] [Related]
6. Structure-function discrepancy in Clostridium botulinum C3 toxin for its rational prioritization as a subunit vaccine. Prathiviraj R; Prisilla A; Chellapandi P J Biomol Struct Dyn; 2016 Jun; 34(6):1317-29. PubMed ID: 26239365 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis. Barth H; Preiss JC; Hofmann F; Aktories K J Biol Chem; 1998 Nov; 273(45):29506-11. PubMed ID: 9792657 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Sterthoff C; Lang AE; Schwan C; Tauch A; Aktories K Infect Immun; 2010 Apr; 78(4):1468-74. PubMed ID: 20145093 [TBL] [Abstract][Full Text] [Related]
9. Alpha-1 antitrypsin inhibits Clostridium botulinum C2 toxin, Corynebacterium diphtheriae diphtheria toxin and B. anthracis fusion toxin. Lietz S; Sokolowski LM; Barth H; Ernst K Sci Rep; 2024 Sep; 14(1):21257. PubMed ID: 39261531 [TBL] [Abstract][Full Text] [Related]
10. The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Barth H; Hofmann F; Olenik C; Just I; Aktories K Infect Immun; 1998 Apr; 66(4):1364-9. PubMed ID: 9529054 [TBL] [Abstract][Full Text] [Related]
11. The binary Clostridium botulinum C2 toxin as a protein delivery system: identification of the minimal protein region necessary for interaction of toxin components. Barth H; Roebling R; Fritz M; Aktories K J Biol Chem; 2002 Feb; 277(7):5074-81. PubMed ID: 11741886 [TBL] [Abstract][Full Text] [Related]
12. New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Barth H; Aktories K Eur J Cell Biol; 2011 Nov; 90(11):944-50. PubMed ID: 21247657 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of immunogenic Clostridium botulinum C2I mutant proteins designed from their evolutionary imprints. Prisilla A; Chellapandi P Comp Immunol Microbiol Infect Dis; 2019 Aug; 65():207-212. PubMed ID: 31300115 [TBL] [Abstract][Full Text] [Related]
14. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. Haug G; Leemhuis J; Tiemann D; Meyer DK; Aktories K; Barth H J Biol Chem; 2003 Aug; 278(34):32266-74. PubMed ID: 12805360 [TBL] [Abstract][Full Text] [Related]
15. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Hochmann H; Pust S; von Figura G; Aktories K; Barth H Biochemistry; 2006 Jan; 45(4):1271-7. PubMed ID: 16430223 [TBL] [Abstract][Full Text] [Related]
16. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin. Aktories K; Barth H Int J Med Microbiol; 2004 Apr; 293(7-8):557-64. PubMed ID: 15149031 [TBL] [Abstract][Full Text] [Related]
17. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878 [TBL] [Abstract][Full Text] [Related]
18. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Kaiser E; Böhm N; Ernst K; Langer S; Schwan C; Aktories K; Popoff M; Fischer G; Barth H Cell Microbiol; 2012 Aug; 14(8):1193-205. PubMed ID: 22420783 [TBL] [Abstract][Full Text] [Related]
19. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Haug G; Wilde C; Leemhuis J; Meyer DK; Aktories K; Barth H Biochemistry; 2003 Dec; 42(51):15284-91. PubMed ID: 14690438 [TBL] [Abstract][Full Text] [Related]
20. Pan-Genomic Analysis of Brunt J; van Vliet AHM; Stringer SC; Carter AT; Lindström M; Peck MW Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32397147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]