These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Theory of tip structure-dependent microtubule catastrophes and damage-induced microtubule rescues. Alexandrova VV; Anisimov MN; Zaitsev AV; Mustyatsa VV; Popov VV; Ataullakhanov FI; Gudimchuk NB Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2208294119. PubMed ID: 36343235 [TBL] [Abstract][Full Text] [Related]
25. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Caplow M; Fee L Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601 [TBL] [Abstract][Full Text] [Related]
26. New features of microtubule behaviour observed in vivo. Schulze E; Kirschner M Nature; 1988 Jul; 334(6180):356-9. PubMed ID: 3393227 [TBL] [Abstract][Full Text] [Related]
27. Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Goldblum RR; McClellan M; White K; Gonzalez SJ; Thompson BR; Vang HX; Cohen H; Higgins L; Markowski TW; Yang TY; Metzger JM; Gardner MK Dev Cell; 2021 Aug; 56(15):2252-2266.e6. PubMed ID: 34343476 [TBL] [Abstract][Full Text] [Related]
28. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Aldaz H; Rice LM; Stearns T; Agard DA Nature; 2005 May; 435(7041):523-7. PubMed ID: 15917813 [TBL] [Abstract][Full Text] [Related]
29. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior. Folker ES; Baker BM; Goodson HV Mol Biol Cell; 2005 Nov; 16(11):5373-84. PubMed ID: 16120651 [TBL] [Abstract][Full Text] [Related]
30. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Arnal I; Heichette C; Diamantopoulos GS; Chrétien D Curr Biol; 2004 Dec; 14(23):2086-95. PubMed ID: 15589150 [TBL] [Abstract][Full Text] [Related]
31. Simulating the role of microtubules in depolymerization-driven transport: a Monte Carlo approach. Tao YC; Peskin CS Biophys J; 1998 Sep; 75(3):1529-40. PubMed ID: 9726955 [TBL] [Abstract][Full Text] [Related]
33. Microtubule rescue control by drugs and MAPs examined with in vitro pedestal assay. Anisimov MN; Korshunova AV; Popov VV; Gudimchuk NB Eur J Cell Biol; 2023 Dec; 102(4):151366. PubMed ID: 37871345 [TBL] [Abstract][Full Text] [Related]
34. Cooperative dynamics of microtubule ensembles: polymerization forces and rescue-induced oscillations. Zelinski B; Kierfeld J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012703. PubMed ID: 23410355 [TBL] [Abstract][Full Text] [Related]
35. Microtubules and maps. Amos LA; Schlieper D Adv Protein Chem; 2005; 71():257-98. PubMed ID: 16230114 [TBL] [Abstract][Full Text] [Related]
36. Motor usage imprints microtubule stability along the shaft. Andreu-Carbó M; Fernandes S; Velluz MC; Kruse K; Aumeier C Dev Cell; 2022 Jan; 57(1):5-18.e8. PubMed ID: 34883065 [TBL] [Abstract][Full Text] [Related]
37. Estimates of lateral and longitudinal bond energies within the microtubule lattice. VanBuren V; Odde DJ; Cassimeris L Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6035-40. PubMed ID: 11983898 [TBL] [Abstract][Full Text] [Related]
38. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Martin SR; Schilstra MJ; Bayley PM Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889 [TBL] [Abstract][Full Text] [Related]
39. Concerning the location of the GTP hydrolysis site on microtubules. Caplow M; Shanks J; Brylawski BP Can J Biochem Cell Biol; 1985 Jun; 63(6):422-9. PubMed ID: 2994860 [TBL] [Abstract][Full Text] [Related]