These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
860 related articles for article (PubMed ID: 27916634)
1. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Vershubskii AV; Trubitsin BV; Priklonskii VI; Tikhonov AN Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):388-401. PubMed ID: 27916634 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic Electron and Proton Transport in Chloroplasts: EPR Study of ΔpH Generation, an Overview. Tikhonov AN Cell Biochem Biophys; 2017 Dec; 75(3-4):421-432. PubMed ID: 28488221 [TBL] [Abstract][Full Text] [Related]
3. Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Tikhonov AN; Agafonov RV; Grigor'ev IA; Kirilyuk IA; Ptushenko VV; Trubitsin BV Biochim Biophys Acta; 2008 Mar; 1777(3):285-94. PubMed ID: 18226594 [TBL] [Abstract][Full Text] [Related]
4. Computer modeling of electron and proton transport in chloroplasts. Tikhonov AN; Vershubskii AV Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748 [TBL] [Abstract][Full Text] [Related]
5. Determination of a transmembrane pH difference in chloroplasts with a spin label tempamine. Trubitsin BV; Tikhonov AN J Magn Reson; 2003 Aug; 163(2):257-69. PubMed ID: 12914841 [TBL] [Abstract][Full Text] [Related]
6. [Electron and proton transport in chloroplasts taking into account lateral heterogeneity of thylakoids. Mathematical model]. Vershubskiĭ AV; Priklonskiĭ VI; Tikhonov AN Biofizika; 2001; 46(3):471-81. PubMed ID: 11449547 [TBL] [Abstract][Full Text] [Related]
7. Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. Takagi D; Amako K; Hashiguchi M; Fukaki H; Ishizaki K; Goh T; Fukao Y; Sano R; Kurata T; Demura T; Sawa S; Miyake C Plant J; 2017 Jul; 91(2):306-324. PubMed ID: 28380278 [TBL] [Abstract][Full Text] [Related]
8. Effects of diffusion and topological factors on the efficiency of energy coupling in chloroplasts with heterogeneous partitioning of protein complexes in thylakoids of grana and stroma. A mathematical model. Vershubskii AV; Priklonskii VI; Tikhonov AN Biochemistry (Mosc); 2004 Sep; 69(9):1016-24. PubMed ID: 15521816 [TBL] [Abstract][Full Text] [Related]
9. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Vershubskii AV; Kuvykin IV; Priklonskii VI; Tikhonov AN Biosystems; 2011 Feb; 103(2):164-79. PubMed ID: 20736046 [TBL] [Abstract][Full Text] [Related]
10. [Mathematical modeling of electron and protein transport, coupled with ATP synthesis in chloroplasts]. Vershubskiĭ AV; Priklonskiĭ VI; Tikhonov AN Biofizika; 2004; 49(1):57-71. PubMed ID: 15029721 [TBL] [Abstract][Full Text] [Related]
11. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. Tikhonov AN; Vershubskii AV Photosynth Res; 2020 Dec; 146(1-3):299-329. PubMed ID: 32780309 [TBL] [Abstract][Full Text] [Related]
12. Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to deltapH, thylakoid internal pH and proton uptake. Siegenthaler PA; Depéry F Eur J Biochem; 1976 Jan; 61(2):573-80. PubMed ID: 2470 [TBL] [Abstract][Full Text] [Related]
13. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes. Rumak I; Mazur R; Gieczewska K; Kozioł-Lipińska J; Kierdaszuk B; Michalski WP; Shiell BJ; Venema JH; Vredenberg WJ; Mostowska A; Garstka M BMC Plant Biol; 2012 May; 12():72. PubMed ID: 22631450 [TBL] [Abstract][Full Text] [Related]
14. A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Yang H; Pu X; Wang L; Liu L; Theg SM Biochem Biophys Res Commun; 2017 Apr; 486(1):1-5. PubMed ID: 27940360 [TBL] [Abstract][Full Text] [Related]
15. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. Shikanai T; Yamamoto H Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692 [TBL] [Abstract][Full Text] [Related]
16. Protons, the thylakoid membrane, and the chloroplast ATP synthase. Junge W Ann N Y Acad Sci; 1989; 574():268-86. PubMed ID: 2483874 [TBL] [Abstract][Full Text] [Related]
17. Relative contributions of PGR5- and NDH-dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts. Kawashima R; Sato R; Harada K; Masuda S Planta; 2017 Nov; 246(5):1045-1050. PubMed ID: 28828567 [TBL] [Abstract][Full Text] [Related]
18. Lateral heterogeneity of plant thylakoid protein complexes: early reminiscences. Anderson JM Philos Trans R Soc Lond B Biol Sci; 2012 Dec; 367(1608):3384-8. PubMed ID: 23148264 [TBL] [Abstract][Full Text] [Related]
19. Proton gradient across the chloroplast thylakoid membrane governs the redox regulatory function of ATP synthase. Sekiguchi T; Yoshida K; Wakabayashi KI; Hisabori T J Biol Chem; 2024 Sep; 300(9):107659. PubMed ID: 39128728 [TBL] [Abstract][Full Text] [Related]
20. Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes. Johnson MP; Ruban AV Photosynth Res; 2014 Feb; 119(1-2):233-42. PubMed ID: 23539362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]