These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Turan B Curr Pharm Biotechnol; 2010 Dec; 11(8):819-36. PubMed ID: 20874678 [TBL] [Abstract][Full Text] [Related]
3. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Fiorentino TV; Prioletta A; Zuo P; Folli F Curr Pharm Des; 2013; 19(32):5695-703. PubMed ID: 23448484 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Ni R; Cao T; Xiong S; Ma J; Fan GC; Lacefield JC; Lu Y; Le Tissier S; Peng T Free Radic Biol Med; 2016 Jan; 90():12-23. PubMed ID: 26577173 [TBL] [Abstract][Full Text] [Related]
5. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Hou J; Zheng D; Fung G; Deng H; Chen L; Liang J; Jiang Y; Hu Y Can J Physiol Pharmacol; 2016 Mar; 94(3):332-40. PubMed ID: 26751764 [TBL] [Abstract][Full Text] [Related]
6. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889 [TBL] [Abstract][Full Text] [Related]
7. Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway. Lv X; Lv GH; Dai GY; Sun HM; Xu HQ Chin J Nat Med; 2016 Nov; 14(11):844-855. PubMed ID: 27914528 [TBL] [Abstract][Full Text] [Related]
8. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Shen GX Can J Physiol Pharmacol; 2010 Mar; 88(3):241-8. PubMed ID: 20393589 [TBL] [Abstract][Full Text] [Related]
9. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Rani N; Bharti S; Bhatia J; Nag TC; Ray R; Arya DS Chem Biol Interact; 2016 Apr; 250():59-67. PubMed ID: 26972669 [TBL] [Abstract][Full Text] [Related]
10. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Gao L; Mann GE Cardiovasc Res; 2009 Apr; 82(1):9-20. PubMed ID: 19179352 [TBL] [Abstract][Full Text] [Related]
11. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis. Chen S; Yin L; Xu Z; An FM; Liu AR; Wang Y; Yao WB; Gao XD Neurosci Lett; 2016 Jan; 612():193-198. PubMed ID: 26679229 [TBL] [Abstract][Full Text] [Related]
12. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Li L; Renier G Metabolism; 2006 Nov; 55(11):1516-23. PubMed ID: 17046555 [TBL] [Abstract][Full Text] [Related]
13. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Sun X; Chen RC; Yang ZH; Sun GB; Wang M; Ma XJ; Yang LJ; Sun XB Food Chem Toxicol; 2014 Jan; 63():221-32. PubMed ID: 24269735 [TBL] [Abstract][Full Text] [Related]
14. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Zhong P; Wu L; Qian Y; Fang Q; Liang D; Wang J; Zeng C; Wang Y; Liang G Biochim Biophys Acta; 2015 Jul; 1852(7):1230-41. PubMed ID: 25736300 [TBL] [Abstract][Full Text] [Related]
15. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Stefano GB; Challenger S; Kream RM Eur J Nutr; 2016 Dec; 55(8):2339-2345. PubMed ID: 27084094 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician. Montezano AC; Touyz RM Can J Cardiol; 2012 May; 28(3):288-95. PubMed ID: 22445098 [TBL] [Abstract][Full Text] [Related]
17. AGE/RAGE signalling regulation by miRNAs: associations with diabetic complications and therapeutic potential. Piperi C; Goumenos A; Adamopoulos C; Papavassiliou AG Int J Biochem Cell Biol; 2015 Mar; 60():197-201. PubMed ID: 25603271 [TBL] [Abstract][Full Text] [Related]
18. Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Suganya N; Bhakkiyalakshmi E; Sarada DV; Ramkumar KM Br J Nutr; 2016 Jul; 116(2):223-46. PubMed ID: 27264638 [TBL] [Abstract][Full Text] [Related]
19. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Rosa CM; Gimenes R; Campos DH; Guirado GN; Gimenes C; Fernandes AA; Cicogna AC; Queiroz RM; Falcão-Pires I; Miranda-Silva D; Rodrigues P; Laurindo FR; Fernandes DC; Correa CR; Okoshi MP; Okoshi K Cardiovasc Diabetol; 2016 Sep; 15(1):126. PubMed ID: 27585437 [TBL] [Abstract][Full Text] [Related]
20. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. Yamagishi SI; Nakamura N; Matsui T J Diabetes; 2017 Feb; 9(2):141-148. PubMed ID: 27556881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]