BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27916660)

  • 1. Isoform Switch of TET1 Regulates DNA Demethylation and Mouse Development.
    Zhang W; Xia W; Wang Q; Towers AJ; Chen J; Gao R; Zhang Y; Yen CA; Lee AY; Li Y; Zhou C; Liu K; Zhang J; Gu TP; Chen X; Chang Z; Leung D; Gao S; Jiang YH; Xie W
    Mol Cell; 2016 Dec; 64(6):1062-1073. PubMed ID: 27916660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Tet1 in erasure of genomic imprinting.
    Yamaguchi S; Shen L; Liu Y; Sendler D; Zhang Y
    Nature; 2013 Dec; 504(7480):460-4. PubMed ID: 24291790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer.
    Good CR; Madzo J; Patel B; Maegawa S; Engel N; Jelinek J; Issa JJ
    Nucleic Acids Res; 2017 Aug; 45(14):8269-8281. PubMed ID: 28531272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner.
    Zhang P; Rausch C; Hastert FD; Boneva B; Filatova A; Patil SJ; Nuber UA; Gao Y; Zhao X; Cardoso MC
    Nucleic Acids Res; 2017 Jul; 45(12):7118-7136. PubMed ID: 28449087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic switching of active promoter and enhancer domains regulates Tet1 and Tet2 expression during cell state transitions between pluripotency and differentiation.
    Sohni A; Bartoccetti M; Khoueiry R; Spans L; Vande Velde J; De Troyer L; Pulakanti K; Claessens F; Rao S; Koh KP
    Mol Cell Biol; 2015 Mar; 35(6):1026-42. PubMed ID: 25582196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions.
    Prasasya RD; Caldwell BA; Liu Z; Wu S; Leu NA; Fowler JM; Cincotta SA; Laird DJ; Kohli RM; Bartolomei MS
    Dev Cell; 2024 Apr; 59(8):1010-1027.e8. PubMed ID: 38569549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells.
    Gu T; Lin X; Cullen SM; Luo M; Jeong M; Estecio M; Shen J; Hardikar S; Sun D; Su J; Rux D; Guzman A; Lee M; Qi LS; Chen JJ; Kyba M; Huang Y; Chen T; Li W; Goodell MA
    Genome Biol; 2018 Jul; 19(1):88. PubMed ID: 30001199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells.
    Hagihara Y; Asada S; Maeda T; Nakano T; Yamaguchi S
    PLoS Genet; 2021 Jun; 17(6):e1009646. PubMed ID: 34166371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.
    Hackett JA; Sengupta R; Zylicz JJ; Murakami K; Lee C; Down TA; Surani MA
    Science; 2013 Jan; 339(6118):448-52. PubMed ID: 23223451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants.
    Xu C; Liu K; Lei M; Yang A; Li Y; Hughes TR; Min J
    Structure; 2018 Jan; 26(1):85-95.e3. PubMed ID: 29276034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
    Wu H; D'Alessio AC; Ito S; Xia K; Wang Z; Cui K; Zhao K; Sun YE; Zhang Y
    Nature; 2011 May; 473(7347):389-93. PubMed ID: 21451524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation.
    Arroyo M; Hastert FD; Zhadan A; Schelter F; Zimbelmann S; Rausch C; Ludwig AK; Carell T; Cardoso MC
    Nat Commun; 2022 Sep; 13(1):5173. PubMed ID: 36056023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1.
    Frauer C; Rottach A; Meilinger D; Bultmann S; Fellinger K; Hasenöder S; Wang M; Qin W; Söding J; Spada F; Leonhardt H
    PLoS One; 2011 Feb; 6(2):e16627. PubMed ID: 21311766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells.
    Tu J; Ng SH; Luk AC; Liao J; Jiang X; Feng B; Lun Mak KK; Rennert OM; Chan WY; Lee TL
    Nucleic Acids Res; 2015 Sep; 43(16):7805-22. PubMed ID: 26130713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells.
    Jin C; Lu Y; Jelinek J; Liang S; Estecio MR; Barton MC; Issa JP
    Nucleic Acids Res; 2014 Jun; 42(11):6956-71. PubMed ID: 24875481
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Greer CB; Wright J; Weiss JD; Lazarenko RM; Moran SP; Zhu J; Chronister KS; Jin AY; Kennedy AJ; Sweatt JD; Kaas GA
    J Neurosci; 2021 Jan; 41(4):578-593. PubMed ID: 33262245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX.
    Ko M; An J; Bandukwala HS; Chavez L; Aijö T; Pastor WA; Segal MF; Li H; Koh KP; Lähdesmäki H; Hogan PG; Aravind L; Rao A
    Nature; 2013 May; 497(7447):122-6. PubMed ID: 23563267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development.
    Hrit J; Goodrich L; Li C; Wang BA; Nie J; Cui X; Martin EA; Simental E; Fernandez J; Liu MY; Nery JR; Castanon R; Kohli RM; Tretyakova N; He C; Ecker JR; Goll M; Panning B
    Elife; 2018 Oct; 7():. PubMed ID: 30325306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nono deficiency compromises TET1 chromatin association and impedes neuronal differentiation of mouse embryonic stem cells.
    Li W; Karwacki-Neisius V; Ma C; Tan L; Shi Y; Wu F; Shi YG
    Nucleic Acids Res; 2020 May; 48(9):4827-4838. PubMed ID: 32286661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA (de)methylation in embryonic stem cells controls CTCF-dependent chromatin boundaries.
    Wiehle L; Thorn GJ; Raddatz G; Clarkson CT; Rippe K; Lyko F; Breiling A; Teif VB
    Genome Res; 2019 May; 29(5):750-761. PubMed ID: 30948436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.