These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27916666)

  • 1. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.
    Cohen MX; Gulbinaite R
    Neuroimage; 2017 Feb; 147():43-56. PubMed ID: 27916666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Entrainment in Drum Rhythms with Silent Breaks: Evidence from Steady-state Evoked and Event-related Potentials.
    Stupacher J; Witte M; Hove MJ; Wood G
    J Cogn Neurosci; 2016 Dec; 28(12):1865-1877. PubMed ID: 27458750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation.
    Mathewson KE; Prudhomme C; Fabiani M; Beck DM; Lleras A; Gratton G
    J Cogn Neurosci; 2012 Dec; 24(12):2321-33. PubMed ID: 22905825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain Oscillation Entrainment by Perceptible and Non-perceptible Rhythmic Light Stimulation.
    Lingelbach K; Dreyer AM; Schöllhorn I; Bui M; Weng M; Diederichs F; Rieger JW; Petermann-Stock I; Vukelić M
    Front Neuroergon; 2021; 2():646225. PubMed ID: 38235231
    [No Abstract]   [Full Text] [Related]  

  • 6. Duration adaptation modulates EEG correlates of subsequent temporal encoding.
    Li B; Chen Y; Xiao L; Liu P; Huang X
    Neuroimage; 2017 Feb; 147():143-151. PubMed ID: 27939922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural entrainment underpins sensorimotor synchronization to dynamic rhythmic stimuli.
    Rosso M; Moens B; Leman M; Moumdjian L
    Neuroimage; 2023 Aug; 277():120226. PubMed ID: 37321359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces.
    Abu-Alqumsan M; Peer A
    J Neural Eng; 2016 Jun; 13(3):036005. PubMed ID: 27064728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory recruitment of bilateral visual cortex during spatial attention to competing rhythmic inputs.
    Gray MJ; Frey HP; Wilson TJ; Foxe JJ
    J Neurosci; 2015 Apr; 35(14):5489-503. PubMed ID: 25855167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters.
    Cohen MX
    Eur J Neurosci; 2018 Oct; 48(7):2454-2465. PubMed ID: 28960497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Brain Oscillations via Rhythmic Light Stimulation Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses.
    Notbohm A; Kurths J; Herrmann CS
    Front Hum Neurosci; 2016; 10():10. PubMed ID: 26869898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contingent negative variation (CNV) associated with sensorimotor timing error correction.
    Jang J; Jones M; Milne E; Wilson D; Lee KH
    Neuroimage; 2016 Feb; 127():58-66. PubMed ID: 26666899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.
    Nozaradan S; Zerouali Y; Peretz I; Mouraux A
    Cereb Cortex; 2015 Mar; 25(3):736-47. PubMed ID: 24108804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-shift denoising source separation.
    de Cheveigné A
    J Neurosci Methods; 2010 May; 189(1):113-20. PubMed ID: 20298717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern classification of EEG signals reveals perceptual and attentional states.
    List A; Rosenberg MD; Sherman A; Esterman M
    PLoS One; 2017; 12(4):e0176349. PubMed ID: 28445551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method for Tracking the Time Evolution of Steady-State Evoked Potentials.
    Prado-Gutiérrez P; Otero M; Martínez-Montes E; Weinstein A; Escobar MJ; El-Deredy W; Zañartu M
    J Vis Exp; 2019 May; (147):. PubMed ID: 31180347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time change detection of steady-state evoked potentials.
    Nave G; Eldar YC; Inbar G; Sinai A; Pratt H; Zaaroor M
    Biol Cybern; 2013 Feb; 107(1):49-59. PubMed ID: 23053433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans.
    Yeom HG; Kim JS; Chung CK
    Comput Intell Neurosci; 2016; 2016():2714052. PubMed ID: 27524996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers.
    Das K; Giesbrecht B; Eckstein MP
    Neuroimage; 2010 Jul; 51(4):1425-37. PubMed ID: 20302949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.